
RTT Grammar Fragment

Andy Lücking

2020

With Referential Transparency Theory (RTT), Lücking and Ginzburg (2022) de-
veloped a plural semantics for count nouns. RTT provides a witness-based and
compositional theory of quantification. Within the RTT article, a few lexical entries
and grammatical derivations of sentences are shown. This paper provides a gram-
mar fragment that implements RTT. Hence, it is an appendix to the main article.
The grammar fragment is formulated within a type-theoretical ‘emulation’ of a
Head-driven Phrase Structure Grammar (HPSG). Some extensions to RTT,most not-
ably collective and distributive interpretations and a replacement of scope in terms
of depedent functions, are developed in Lücking (2022).

Contents

1 Introduction 1

2 Grammar fragment 2
2.1 Merge and the general sign architecture . 2
2.2 Lexical entries for nouns, verbs, quantifiers . 4
2.3 Lexical rules . 6
2.4 Syntactic rules . 10

1 Introduction

The grammar framework employed here is a variant of Head-driven Phrase Structure Grammar
(HPSG; Pollard and Sag 1994; Sag, Wasow and Bender 2003), specifically its TTR implementa-
tion (HPSGTTR; Cooper 2008; Ginzburg 2012). We use HPSG, because its structured represent-
ation format in terms of attribute value matrices allows one to address elements by attribute
names. We use HPSGTTR, because the type-theoretical version allows us to directly incorporate
the semantic objects introduced in the previous sections.
Our strategy is to pursue a hybrid approach: we implement a TTR analogue to unification in

order to capture syntactic agreement and lexical restrictions. Semantic composition is done in
terms of function application. In order to streamline grammar representations in an HPSGTTR
format, we factor out common features of constructions into general constraints, as is done in

1

HPSG in terms of principles (Sag, Wasow and Bender, 2003). The grammar fragment extends
that given in the appendix of Lücking, Ginzburg and Cooper (2021).

2 Grammar fragment

2.1 Merge and the general sign architecture

To start with, the TTR analogue to unification, namely merge types, have to be introduced.

(1) a. If R1 and R2 are record types, then R1 ∧merge R2 is a record type and is called the
merge of R1 and R2.

b. Since merge types are complicated to define (but see Cooper 2012), we follow the
strategy of Cooper (2017) and illustrate the working of merges by means of some
examples:
(i) [

a : T
b :R

]
∧merge

[
c : S

]
=

a : Tb :R
c : S


(ii)

[
a : T

]
∧merge

[
a :R

]
=
[
a : T ∧merge R

]
Mainly in order to capture morpho-syntactic information we introduce tag types following

feature value re-entrances from constraint-based grammars—thereby making the connection
transparent and facilitating the readability of HPSGTTR to readers familiar with ‘classic’ HPSG.
we even use the same typographical means, namely boxed numbers. In fact, tag types abbre-
viate singleton types across different paths and their prime area of use is agreement: the tag
type in (2a) is an abbreviation for the structure in (2b) (we use the slash notation in order to
indicate paths starting at the outmost level of a feature structure):

(2) a.
cat :


head :

[
agr = 3sing 1 : Agr

]
spr :

〈
[cat :

[
head :

[
agr = 1 : Agr

]]〉



b.
cat :


head :

[
agr = 3sing : Agr

]
spr :

〈
[cat :

[
head :

[
agr = /cat.head.agr : Agr

]]〉



The agreement type Agr is defined in the usual way as follows:

(3)
Agr :=

per : Per(son)
num : Num(erus)
gen : Gend(er)


A sign is a structure that hosts phonetic, syntactic and semantic information:

2

(4)

sign :=


phon : Phoneme
cat : SynCat
dgb-params : RecType
cont : SemObj


Signs are distinguished in terms of their constituency status or construction type (cxtype)

into lexemes, words and phrases. Using the merge operation, constituent types can be represen-
ted compactly as constraints over sign. For instance, a word is defined in (5a), which expands
to the structure given in (5b):

(5) a. word := sign ∧merge [cxtype : word] : RecType

b. 
cxtype :word
phon : Phoneme
cat : SynCat
dgb-params : RecType
cont : SemObj


Words are the output of lexical rules, whose inputs are lexemes:

(6) lexeme := sign ∧merge [cxtype : lexeme] : RecType

A phrase is distinguished from words by having daughters. We confine ourselves to phrases
with two daughters here, which are represented by means of binary trees as illustrated in (7):

(7) phrase := sign ∧merge [cxtype : phrase]

sign sign

If one of the daughters of a phrase chiefly determines (as a default at least) the syntactic
properties of the mother, it is the head of the phrasal construction, which in turn then is a
headed phrase. A headed phrase has a daughter labelled as headwhich passes on the syntactic
head feature to themother (indicated by amerge type). Themother also appends the daughters’
phon values:

(8)

cxtype : phrase
phon : List(3 , 2)

cat :
[
head= 1 : PoS

]
cont : SemObj


[
phon : List(Phoneme) 3

]
head :=


phon : List(Phoneme) 2

cat :
[
head 1 : PoS

]
cont : SemObj



3

Using constraints and merge types a great deal of linguistic information can be factored out
so that lexical entries just have to specify idiosyncratic information of words.

2.2 Lexical entries for nouns, verbs, quantifiers

One upshot of the discussion of the distributive quantifiers in Lücking and Ginzburg (2022,
§4.7), is that they involve a syntactic feature that triggers a distributive interpretation of the
predicate that combines with the NP whose determiner the quantifier is. To this end, a binary-
valued feature distr is added to nouns.1 The raison d’être of distr is as follows: distr=+ encodes
the requirement that a predicate taking the so-marked NP as argument has a distributive in-

terpretation (i.e.,
dist−−−→

PType). The marking distr=− on the other hand does not force a distributive
interpretation, although it allows one (i.e.,

−−−→
PType). Since according to the underlying grammar

framework the head of a quantificational NP is the noun instead of the determiner (i.e., an NP
instead of a DP analysis is pursued), the plural feature has to be made part of the noun’s head
feature structure in order to get projected to the phrasal level where it is visible for the verb.
Furthermore, since we have argued that singular is just a special case of plural, nouns are lexic-
alised as pluralities, involving the maxset-refset-compset-triplet right from the beginning. The
extended lexical geometry for nouns is as follows:

(9) noun 7→

cxtype : lexeme
phon : list(Phoneme)

cat :



head :


pos=n : PoS

agr 1 :

num : Num
case : Case
gend : Gend


distr : Binary



spr :

〈head :
pos=det : PoSagr= 1 : AgrType
count : Binary



〉


dgb-params :

maxset : Set(Ind)
refset : Set(Ind)
compset : Set(Ind)


cont : SemObj



1Note that for the same reason the feature “count” is part of a determiner’s sign structure Sag, Wasow and Bender
(2003, p. 112), since verbs do not select for count or mass nouns. Nouns are classified by selecting “count=+”
or “count=−” specifiers. Much more syntactic features are used by Beghelli and Stowell (1997) (like “Wh”
(markingWh-phrases), “Univ” (indicating universally quantification), or “Neg” (for negation), which are partly
captured in purely semantic terms in the present account). For reasons of elegance or systematics, it could
be worthwhile to introduce a uniform place for a quantificational syntax-semantics interface for noun phrases
(say, a new feature bundle quantificational type, or simply “qtype”), which eventually can be extended by further
features, if required.

4

The semantic object (SemObj) type for a count noun’s content will usually be an individual (Ind)
or a set of individuals (Set(Ind))—this issue will be of concern for lexical rules below.
The lexeme geometry for intransitive verbs is given in (10):

(10) verb 7→

cxtype : lexeme
phon : list(Phoneme)

cat :



head :


pos=v : PoS

agr 1 :

num : Num
pers : Pers
gend : Gend




spr :

〈head :
pos=n : PoS
agr= 1 : AgrType
distr: Binary



〉

comps : list(Sign)


cont : SemObj


Both nouns and verbs agreewith their specifiers (spr), but the parts of speech of the specifiers

differ. It is part of the lexical entry for every that it combines with a head noun that is ‘distr=+’.
The lexical entry for every is given in (11):

(11) 

phon : every

cat :



head :


pos=det : PoS

agr :
[
num=sg : Num

]
count=+ : Binary



spec :

〈


cat :

head :[pos=n : PoS
distr=+ : Binary

]

q-params :


maxset : Set(Ind)
refset : Set(Ind)
compset : Set(Ind)
c1 : union(refset,compset,maxset)


〉


cont :
[
q-cond : |/cat.spec.q-params.refset| = |/cat.spec.q-params.maxset|

]




The peculiar thing about every is that it semantically applies to a plurality while it syntactically
combines with a singular noun. This peculiarity is mostly overlooked or at least not dealt with
in quantifier semantics. This might partly be due to the circumstance that this poses non-trivial
problems for a compositional grammar, since a non-uniform syntax-semantics interface is re-
quired. Since the rich, referentially transparent architecture somewhat blurs a sharp contrast
between singular and plural in semantics anyway, we can model every-type determiners as
follows: they combine with a syntactically singular noun but contributing a plural quantifier
condition.

5

2.3 Lexical rules

Agreement values are instantiated by lexical rules that take lexemes as input and return word
forms as output. The lexical rule that produces plural count nouns—that is, nouns whose spe-
cifier’s value for the count feature is ‘+’—is as follows:

(12) Plural Rule for Count Nouns (PL-count)

in:



cxtype : lexeme
phon : list(Phoneme)

cat :


head :

[
pos=n : PoS

]
spr :

〈[
head :

[
count=+ : Binary

]]〉


dgb-params :


refset : Set(Ind)
maxset : Set(Ind)
compset : Set(Ind)
c1 : union(refset,compset,maxset)

c2 :
−−−→
PType (maxset)


cont :

[
x=dgb-params.refset : Set(Ind)

]


7→ out: 

cxtype : word
phon=Fpl(in.phon) : list(Phoneme)

cat :


head :


pos=n : PoS

agr :
[
num=pl : Num

]
distr=− : Binary


spr :

〈[
head :

[
count=+ : Binary

]]〉



dgb-params :



refset : Set(Ind)
maxset : Set(Ind)
compset : Set(Ind)
c1 : union(refset,compset,maxset)

c2 :
−−−→
PType (maxset)


cont :

[
x=dgb-params.refset : Set(Ind)

]


Basically, PL-count does three things:

• it replaces the phonetic representation of the input word by its plural form (by means of
a phonetic plural function ‘Fpl’);

• it specifies the agreement value of the output to be ‘plural’ (pl);

• it makes a plural count noun compatible with any plural type (that is, not forcing a
distributive interpretation by default) via feature ‘distr=−’.

6

Due to the lexically specified congruence between a determiner’s and a noun’s agreement
values (see (9)), syntactic agreement precludes singular determiners like a or every from com-
bining with an output of PL-Count. They can, however, combine with a singular noun, which
is the output of SG-count:

(13) Singular Rule for Count Nouns (SG-count)
in: 

cxtype : lexeme
phon : list(Phoneme)

cat :


head :

[
pos=n : PoS

]
spr :

〈[
head :

[
count=+ : Binary

]]〉


dgb-params :


refset : Set(Ind)
maxset : Set(Ind)
compset : Set(Ind)
c1 : union(refset,compset,maxset)

c2 :
−−−→
PType (maxset)


cont :

[
x=dgb-params.refset : Set(Ind)

]


7→ out: 

cxtype : word
phon=Fsg(in.phon) : list(Phoneme)

cat :


head :


pos=n : PoS

agr :
[
num=sg : Num

]
distr=− : Binary


spr :

〈[
head :

[
count=+ : Binary

]]〉



dgb-params :



refset : Set(Ind)
maxset : Set(Ind)
compset : Set(Ind)
c1 : union(refset,compset,maxset)

c2 :
−−−→
PType (maxset)

refind : Ind
c3 : in(refind,refset)


cont :

[
x=dgb-params.refind : Ind

]


The main task of SG-count is to introduce a refind into dgb-params and assign it to the noun’s
content value. As discussed in Lücking andGinzburg (2022, §3.5), dgb-params are just one set of
parameter that accomplish ‘referential/quantificational bookkeeping’. There is a set of coercion
rules mapping between them, bringing about the different witnessing conditions discussed in
Lücking and Ginzburg (2022, §3.5) above. This family of rules is exemplified in (14) by means
of the refset. Similar rules obtain for maxset and compset.

7

(14) Coercion rules mapping between dgb-params and q-params

a. in:


cat :
[
pos=np : PoS

]
dgb-params : RecType

q-params :
[
refset : Set(Ind)

]
cont :

[
x=q-params.refset : Set(Ind)

]


7→ out:


dgb-params :

[
refset : Set(Ind)

]
q-params : RecType

cont :
[
x=dgb-params.refset : Set(Ind)

]


b. in:


cat :
[
pos=np : PoS

]
q-params : RecType

dgb-params :
[
refset : Set(Ind)

]
cont :

[
x=dgb-params.refset : Set(Ind)

]


7→ out:


q-params :

[
refset : Set(Ind)

]
dgb-params : RecType

cont :
[
x=q-params.refset : Set(Ind)

]


Not much has to be done for verbs: the corresponding singular and plural rules add the
required agreement feature, which, by means of the general verb constraint, has to comply
with that of the verb’s specifier (i.e., the subject in a sentence).
Both PL-count and SG-count (as well as the corresponding verb rules omitted here for the

sake brevity) obey a one-to-one correspondence between syntactic and semantic number. Given
evidence such as the following the straightforward syntax-semantics relationship with regard
to number seems too simplistic, however:

• There are a couple of plural expressions denoting a single individual such as pluralis
majestatis, pluralis modestiae, pluralis auctoris or pluralis excellentiae. Though being syn-
tactically plural, their content contribution consists in a semantic object of type Ind.

• There are syntactically singular expressions that receive a plural interpretation: every-
QNPs are a case in point.

We account for the latter case in terms of lexical noun rules which are driven by the distr
feature (we will not be concerned with the various forms of pluralia mentioned in the first
bullet point, however). To this end, a singular count noun with feature distr=− and a refind
as semantic value can turn into a singular count noun with feature distr=+ and a refset as a
semantic value:

(15) Distributive noun rule (dist-n-rule)

8

in: 

cxtype : word

cat :

head :


pos=n : PoS

agr :
[
num=sg : Binary

]
distr=− : Binary




dgb-params :

refset : Set(Ind)refind : Ind
c3 : in(refind,refset)


cont :

[
x=dgb-params.refind : Ind

]


7→ out: 

cxtype : word

cat :

head :


pos=n : PoS

agr :
[
num=sg : Binary

]
distr=+ : Binary




dgb-params :

refset : Set(Ind)refind : Ind
c3 : in(refind,refset)


cont :

[
x=dgb-params.refset : Set(Ind)

]


Of course, the dist-n-rule needs to be echoed by verb phrases: if a verb’s specifier exhibits
the distr=+ feature, the verb receives a distributive interpretation. The latter happens when
a distr=+ NP merges into a VP’s specifier slot when both are to be combined into a sentence
by means of the head-subject rule (which is given in the subsequent section 2.4). Dist-v-rule
is formulated over phrasal constructions, so that it applies to verbs that are saturated with all
but the subject argument.

(16) Distributive verb rule (dist-v-rule)
in:



cxtype : phrase

cat :



head :
[
pos=v : PoS

]

spr :

〈

head :

[
pos=n : PoS
distr=+ : Binary

]
spr : 〈 〉

cont :

[
x : Set(Ind)
y : Set(Ind)

]


〉





9

7→ out:


cxtype : phrase

cat :



head :
[
pos=v : PoS

]

spr :

〈

head :

[
pos=n : PoS
distr=+ : Binary

]
spr : 〈 〉

cont :

[
x : Set(Ind)
y : Set(Ind)

]


〉



cont :

nucl :
dist−−−→

PType (/cat.spr.cont.x)

anti-nucl :¬
dist−−−→

PType (/cat.spr.cont.y)





2.4 Syntactic rules

The syntactic rules that govern the construction of phrasal types from words crucially involve
a division of tasks:

• unification (resp. merge types) and tag types account for lexically specified information
like syntactic agreement (spr-verb, det-n, …);

• functional application of cont values in sentential types implements a predicational se-
mantics of subject-verb constructions, as motivated in Lücking and Ginzburg (2022, §2.4,
§4.5).

The construction of NPs out of a (quantificational) determiner and a noun is licensed by
the head-determiner rule (hd-det-rule). Since it is a headed rule, it is merged with the general
constraints from headed structures given in (8) above.
The hd-det-rule from Fig. 1 can be instantiated by the QNP every student, but not without

further ado: since every selects for a head noun which is “distr=+” but singular student has
“distr=−” due to SG-count, student has to undergo the dist-n-rule first, which introduces the
appropriate distr value and assigns the refset to the content value. After this lexical operation,
the hd-det-rule applies to a QNP such as every student as shown in Fig. 2.
Resolving the path equalities in (16), the grammatical model of the QNP every student (i.e.,

the mother node from (16)) is as follows:

10



cxtype : phrase

cat :

[
head= 1 : SynCat
spr : 〈 〉

]

dgb-params :

[
dgb1 = head.dgb-params
dgb2 = det.cont.q-cond

]
cont=head.cont : SemObj



det :=
cxtype :word

cat :

head :[pos=det : PoS]
spec : 〈head〉


cont :

[
q-cond : Rel

]



head :=
cxtype :word

cat :

[
head 1 : SynCat
spr : 〈det〉

]
dgb-params : RecType
cont : SemObj


Figure 1: Head-Determiner Rule (hd-det-rule)

(17) 

cxtype : phrase
phon : List(every, student)

cat :


head :



pos=n : PoS

agr :

pers=3rd : Per
num=sg : Num
gen=masc : Gen


distr=+ : Binary


spr : 〈 〉



dgb-params :



maxset : Set(Ind)
refset : Set(Ind)
compset : Set(Ind)
c1 : union(refset,compset,maxset)

c2 :
−−−−→
student(maxset)

refind : Ind
c3 : in(refind,refset)
q-cond : |refset| = |maxset|


cont :

[
x = dgb-params.refset
y = dgb-params.compset

]


Now, if the NP from (17) merges into the spr field of a verb phrase by instantiating the singular
head-subject-rule, a semantic error will occur, since a singular predicate expects a subject’s
content of type Ind but every student provides one (in fact, two) of type Set(Ind). A little detour
will result in a successful parse, namely when the verb phrase passes through dist-v-rule first.
Now every student und the intransitive verb runs can enter the plural head-subj-rule. Note
that both the subject NP as well as the VP are syntactically singular but nonetheless instantiate
a plural sentential rule. In other words, the head-sbj-rule is a semantic, not a syntactic rule

11



cxtype : phrase
phon : List(every, student)

cat :


head= 1 :


pos=n : PoS

agr :

pers=3rd : Per
num=sg : Num
gen=masc : Gen


distr=+ : Binary


spr : 〈 〉


dgb-params :

[
dgb1 = head.dgb-params
dgb2 = det.cont.q-cond

]

cont :

[
x = head.cont.x
y = head.cont.y

]



det :=

cxtype :word
phon : every

cat :

head :
[
pos=det : PoS
count=+ : Binary

]
spec : 〈head〉


cont :

[
q-cond : |head.dgb-params.refset|

= |head.dgb-params.maxset|

]



head :=

cxtype :word
phon : student

cat :

[
head 1 : SynCat
spr : 〈det〉

]

dgb-params :



maxset : Set(Ind)
refset : Set(Ind)
compset : Set(Ind)
c1 : union(refset,compset,maxset)
c2 :

−−−−→
student(maxset)

refind : Ind
c3 : in(refind,refset)


cont :

[
x=dgb-params.refset : Set(Ind)
y=dgb-params.compset : Set(Ind)

]


Figure 2: Instantiating the hd-det-rule with the QNP every student.

(the VP’s content is of type −→IV, which is the plural type of an intransitive verb). The plural
head-subject rule (pl-hd-subj-rule) is shown in Fig. 3.
Combining every student (as subj) and runs (as head) by dint of the plural head-subject-

rule gives rise to a mother structure from Fig. 4 (where path equalities, for example, between
subject’s cont and dgb-params, are resolved). The type in Fig. 4 represents a fully referential
interpretation, since all reference markers are grounded within dgb-params. Moving elements
from dgb-params to q-params is lexically licensed by rules that operate on NPs (see the sample
coercion rules given in section 2.3). These rules form a family whose members corresponds to
the pragmatic processes involved in spreading the reference markers (that is, maxset, refset,
compset and refind) over the parameter set appropriate in the context of a particular utterance.
The grammar fragment sketched in this supplement is sufficient for deriving sentences con-

taining both a QNP subject and a QNP object. The final sentence structure of the example sen-

12



cxtype : phrase

cat :

head :
[
pos=v : PoS

]
spr : 〈 〉


dgb-params:

s0 : Rec
subj.dgb-params : DP1
head.dgb-params : DP2



cont =


sit = s0

sit-type =


subj.q-params : QP1
head.q-params : QP2
nucl : hd-dtr.cont(subj.cont.x)
anti-nucl :¬hd-dtr.cont(subj.cont.y)



: Prop



subj :=

cxtype : phrase

cat :

head :
[
pos=n : PoS

]
spr : 〈 〉


q-params = QP1 : RecType
dgb-params = DP1 : RecType

cont :

[
x : Set(Ind)
y : Set(Ind)

]



head :=


cxtype : phrase

cat :

head :[pos=v : PoS]
spr : 〈subj〉


q-params = QP2 : RecType
dgb-params = DP2 : RecType
cont : −→IV



Figure 3: Plural head-subject rule (pl-hd-subj-rule)

tence used there, Every student lifted the piano, is given in Fig. 5. Due to every, the verb phrase
lifted the piano represents a distributive plural type according to which the students lifted the
piano individually. In accordance with the psycholinguistic evidence reviewed in Lücking and
Ginzburg (2022, §1.1), the grammar fragment outlined above dispenses with quantifier float-
ing and implements an in situ account. This means that readings attributed to scopal relations
between QNPs within a sentence have to be replaced by other, more psycholinguistic and pro-
cessing oriented mechanisms. In this regard we simply note finally that structures like that
in (17) captures so-called wide-scope readings—which turn out to be relational meanings. So-
called narrow-scope readings are modelled in terms of dependent functions, cf. Lücking and
Ginzburg (2022, §5).

13



cxtype : phrase
phon : List(every, student, runs)

cat :


head :


pos=v : PoS

agr :

[
pers=3rd : Per
num=sg : Num

]
spr : 〈 〉



dgb-params :



s0 : Rec
maxset : Set(Ind)
refset : Set(Ind)
compset : Set(Ind)
c1 : union(refset,compset,maxset)

c2 :
−−−−→
student(maxset)

refind : Ind
c3 : in(refind,refset)
q-cond : |refset| = |maxset|



cont :


sit = /dgb-params.s0 : Rec

sit-type =

nucl :
dist−→run(/dgb-params.refset)

anti-nucl :¬
dist−→run(/dgb-params.compset)

RecType

Prop


Figure 4: Applying the pl-hd-subj-rule to Every student runs.

14

s :=

phon : List(every, student, lifted, the, piano)

cat :

head :[pos=v : PoS]
spec : 〈 〉


dgb-params :

[
dgb-params-obj : DP2

]

cont =



sit = s1 : Rec

sit-type =


q-params :

[
q-params-sbj : QP1

]
nucl :

dist−→
lift1(q-params.x,dgb-params.z)

anti-nucl :¬
dist−→
lift1(q-params.y,dgb.params.z)

 : Prop





subj :=

phon : List(every, student)

cat :

head :

pos=n : PoS
distr=+ : Binary
count=+ : Binary


spec : 〈 〉


q-params : QP1

QP1 =



maxset-sbj : Set(Ind)
c1 :

−−−−→
student(maxset)

refset-sbj : Set(Ind)
compset-sbj : Set(Ind)
q-cond : |q-params.refset-sbj|
= |q-params.maxset-sbj|


: RecType

cont :

[
x=q-params.refset-sbj : Set(Ind)
y=q-params.compset-sbj : Set(Ind)

]



head :=

phon : List(lifted, the, piano)

cat :

head :[pos=v : PoS]
spec : 〈subj〉


dgb-params : DP2

DP2 =



z = refind-obj : Ind
refset-obj : Set(Ind)
compset-obj : Set(Ind)
maxset-obj : Set(Ind)
c4 : −−−→piano(maxset-obj)
c5 : in(refind-obj,refset-obj)


: RecType

cont = λr : subj .
dist−→
lift1(r.cont.x,refind-obj) : (Rec → RecType)



Figure 5: Deriving the transitive sentence Every student lifted the piano.

15

	Introduction
	Grammar fragment
	Merge and the general sign architecture
	Lexical entries for nouns, verbs, quantifiers
	Lexical rules
	Syntactic rules

