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Classification words 93,120 1,501.935

Conciu turns 28,380 457.742
events 1,731 27.919
event phases 5,153 83.113
lexops 4,415 71.210

repairs 3,327 53.661
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QNA[Mahalanobis,complete] 47 /103
QNA[Mahalanobis,complete] .90654 46/ 103
QNA[Mahalanobis,Ward] S 49 /103

QNA[correlation,complete]

4 random baseline known-
partition

random baseline equi-
partition

.61788
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Observation
In any case, multiple topological indices are needed

What is the relationship among the topological
indices?
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= 280 minutes video
m 39,435 words
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