

Spatial Gesture Semantics

5. Lexicon-driven speech-gesture integration

Andy Lücking Alexander Henlein

Goethe University Frankfurt

July 28-August 01, 2025

Recap

Yesterday's lecture

- ML basics
- Multimodal Al
- Gesture detection and classification (drinking and eating gestures)

Today's lecture

- Given InfEval: how do speech and gesture integrate?
- Computing relation R

- We argue that usual dynamic semantic methods apply
- Main source: Frames

Recall: Conditioned interpretation

Conditioned interpretation:

If gesture γ is informationally evaluated to mean p, then the whole multimodal utterance α is interpreted as $\alpha[R(p,\beta)]$.

3

Minimized contexts

Bridging

- I can't ride my bike today. The back wheel's tire is flat.
- The footage shows a man running on stage and stabbing Adamowicz [...].
 The assailant paces back and forth, arms aloft like a victorious boxer, still holding the 15cm (six-inch) knife.¹

¹BBC news, https://www.bbc.com/news/world-europe-46878325, accessed 10th January 2024. (Pawel Adamowicz was the mayor of Gdansk.)

 $^{^2}$ H. H. Clark (1975). "Bridging". In: Proc. of the 1975 Workshop on Theoretical Issues in Natural Language Processing, 169–174

Bridging

- I can't ride my bike today. The back wheel's tire is flat.
- The footage shows a man running on stage and stabbing Adamowicz [...].
 The assailant paces back and forth, arms aloft like a victorious boxer, still holding the 15cm (six-inch) knife.¹
- The tire is understood as the tire of the bike.
- The knife is understood as the instrument of the stabbing event, and pacing back and forth the stabbing action.
- Such indirect anaphoric relations are known as bridging.²

¹BBC news, https://www.bbc.com/news/world-europe-46878325, accessed 10th January 2024. (Pawel Adamowicz was the mayor of Gdansk.)

 $^{^2}$ H. H. Clark (1975). "Bridging". In: Proc. of the 1975 Workshop on Theoretical Issues in Natural Language Processing, 169–174

Discourse referents in dynamic semantics

 "[an interpreter] must be able to recognize when a novel individual is mentioned in the input text and to store it along with its characterization for future reference."³

³ L. Karttunen (1969). "Discourse Referents". In: Proc. of the 1969 Conference on Computational Linguistics, 1–38

⁴ H. Kamp and U. Reyle (1993). From Discourse to Logic. Kluwer Academic Publishers

Discourse referents in dynamic semantics

- "[an interpreter] must be able to recognize when a novel individual is mentioned in the input text and to store it along with its characterization for future reference."
- Bill owns a car. It is black.
- Bill doesn't own a car. #It is black.

³ L. Karttunen (1969). "Discourse Referents". In: Proc. of the 1969 Conference on Computational Linguistics, 1–38

⁴ H. Kamp and U. Reyle (1993). From Discourse to Logic. Kluwer Academic Publishers

Discourse referents in dynamic semantics

- "[an interpreter] must be able to recognize when a novel individual is mentioned in the input text and to store it along with its charactarization for future reference."³
- Bill owns a car. It is black.
- Bill doesn't own a car. #It is black.

- DRT: Discourse referents and conditions⁴
- [x, y, z, z = y; Bill(x), car(y), own(x, y), black(z)]
- [x; Bill(x), ¬[y; car(y), own(x, y)], #black(z)]
 (y not available for z)

³ L. Karttunen (1969). "Discourse Referents". In: Proc. of the 1969 Conference on Computational Linguistics, 1–38

⁴ H. Kamp and U. Reyle (1993). From Discourse to Logic. Kluwer Academic Publishers

Implicit discourse referents in dynamic semantics

- x being healthy again: [x; healthy(x)]
- Presupposition: x was ill and recovered
- \rightarrow Meaning postulate: $[v, x; ailment(v) \Rightarrow recovered(v, x)]$ The fever is gone.
- Now there is a new implicit discourse referent $v!^5$

 $^{5}\,$ H. Kamp and A. Rossdeutscher (1994). "DRS-Construction and Lexically Driven Inference". In: Theoretical Linguistics 20, 165–235

Peter is healthy again.

Frames

Frames

- Frames can be conceived as stereotypical situation types which are connected to lexical items.
- A word form not only contributes its content, but it also evokes the frames it is connected to.
- Frame semantics is organized in a frame-base lexicon called FrameNet.

Framenet

- https://framenet.icsi.berkeley.edu/ frameIndex
- Look up example entry *staircase.n* and the connecting_architecture frame

Frame Evocation⁶

Output:

Input:

 λx .

X

staircase(x)

λx.

X e, y_1, y_2, y_3, y_4 e: connecting architecture Part(e, x)staircase(x)Creator(e, y_1), $y_1 = ?$ Descriptor(e, y_2), $y_2 = ?$ Direction(e, y_3), $y_3 = ?$ Material(e, v_A), $v_A = ?$

 $^{^6\,}$ M. Irmer (2013). "Inferring Implicatures and Discourse Relations from Frame Information". In: Lingua 132. Special Issue: Implicature and Discourse Structure, 29–50

Example: affiliate *staircases*

- Inside the hall was an imposing staircase.
- InfEval: R(spiral, staircase).

InfEval + **Frame invocation**

```
X, Z
                     e, y_1, y_2, y_3, y_4
         e : connecting_architecture
         Part(e, x)
        staircase(x)
        Creator(e, y_1), y_1 = ?
\lambda x.
        Descriptor(e, y_2), y_2 = ?
         Direction(e, y_3), y_3 = ?
        Material(e, y_4), y_4 = ?
        spiral(z)
        R(\text{spiral}(z), \text{staircase}(x)), R = ?
```

11

InfEval + Frame invocation

```
X, Z
                      e, y_1, y_2, y_3, y_4
         e: connecting architecture
         Part(e, x)
         staircase(x)
         Creator(e, y_1), y_1 = ?
\lambda x.
         Descriptor(e, y_2), y_2 = ?
         Direction(e, y_3), y_3 = ?
         Material(e, v_4), v_4 = ?
         spiral(z)
         R(\text{spiral}(z), \text{staircase}(x)), R = ?
```

 Since spiral is a shape predicate, the only plausible frame element to resolve R is R = Descriptor.

Resolved multimodal meaning

```
X, Z
           e, y_1, y_2, y_3, y_4
e : connecting_architecture
Part(e, x)
staircase(x)
Creator(e, y_1), y_1 = ?
Descriptor(e, y_2), y_2 = \text{spiral}(z), z = x
Direction(e, y_3), y_3 = ?
Material(e, y_4), y_4 = ?
```

Benefits of being formally precise

Dowty (1979)

"[...] an important goal of formalization in linguistics is to enable subsequent researchers to see the defects of an analysis as clearly as its merits; only then can progress be made efficiently." ⁷

 $^{^{7}\,}$ D. R. Dowty (1979). Word Meaning and Montague Grammar. Reidel, 322

Benefits of being formally precise

Dowty (1979)

"[...] an important goal of formalization in linguistics is to enable subsequent researchers to see the defects of an analysis as clearly as its merits; only then can progress be made efficiently." ⁷

- There are some informal approaches to gesture and speech—gesture integration.
- Can frames say something more precise?

 $^{^{7}\,}$ D. R. Dowty (1979). Word Meaning and Montague Grammar. Reidel, 322

Slapping

- John [slapping gesture] punished his son.
- Non-at-issue conditional presupposition / local context:

If John punished his son, then slapping would be involved.⁸

⁸ P. Schlenker (2018). "Gesture projection and cosuppositions". In: Linguistics and Philosophy 41, 295–365, 318

Slapping

- John [slapping gesture] punished his son.
- Non-at-issue conditional presupposition / local context:

If John punished his son, then slapping would be involved.⁸

 Can we reconstruct this with InfEval and conditioned interpretation?

 $^{^{8}}$ P. Schlenker (2018). "Gesture projection and cosuppositions". In: Linguistics and Philosophy 41, 295–365, 318

InfEval

- If we interpret the gesture as slapping, with punished being the lexical affiliate, then the multimodal information package 'R(slapped, punished)' is obtained.
- The lexical unit *punish.v* evokes the Rewards_and_punishment frame.

Frame Evocation

	y, x, e
λy.λx.λe.	punish(e) agent(e , x) patient(e , y

$$\lambda y.\lambda x.\lambda e.$$

```
y, x, e
              z_1, z_2, z_3, z_4, z_5
e: rewards_and_punishment
punish(e)
Agent(e, x)
Evaluee(e, y)
Reason(e, z_1), z_1 = ?
Degree(e, z_2), z_2 = ?
Instrument(e, z_3), z_3 = ?
Manner(e, z_4), z_4 = ?
Means(e, z_5), z_5 = ?
```

Punishing means

 Being an action-simulating gesture, slapping instantiates the non-core Means frame element: punish by slapping

 $\lambda y.\lambda x.\lambda e.$

 x punished y by slapping y.

```
v, x, e, e', x', v'
                        Z_1, Z_2, Z_3, Z_4, Z_5
e: rewards and punishment
punish(e)
Agent(e, x)
Evaluee(e, v)
Reason(e, z_1), z_1 = ?
Degree(e, z_2), z_2 = ?
Instrument(e, z_3), z_3 = ?
Manner(e, z_4), z_4 = ?
Means(e, z_5), z_5 = \text{slap}(e'), e' = e
agent(e', x'), x' = x
patient(e', v'), v' = v
```

Punishing means

 But there is a different interpretation: x punished y by slapping y'¬y.

 $\lambda y.\lambda x.\lambda e.$

 Think of John punishing his son by slapping the son's pet. v, x, e, e', x', y' z_1, z_2, z_3, z_4, z_5 e: rewards and punishment punish(e)Agent(e, x)Evaluee(e, v) Reason $(e, z_1), z_1 = ?$ Degree(e, z_2), $z_2 = ?$ $Instrument(e, z_3), z_3 = ?$ $Manner(e, z_4), z_4 = ?$ Means $(e, z_5), z_5 = \text{slap}(e'), e' = e$ agent(e', x'), x' = x $patient(e', v'), v' \neq v$

Pro Dowty

- More precise analysis thanks to formal framework.
- What about speech–gesture mismatches?

Multimodal well-formedness

- Inside the hall was an imposing [slapping gesture] staircase.
- Local context: every world w in which a staircase is in the hall is one in which slapping is involved.
- Odd but possible.

Multimodal well-formedness

- Inside the hall was an imposing [slapping gesture] staircase.
- Local context: every world w in which a staircase is in the hall is one in which slapping is involved.
- Odd but possible.

- Slapping, denoting an action, is not a good candidate to fill any of the frame elements evoked by staircase
- Frame-based dynamic semantics algorithms would fail to integrate speech and gesture in this case and signal a mismatch.

Intermediate summary

- InfEval, conditioned interpretation, and, if required (i.e., $p \neq \beta$), frame-based integration of speech and gesture provides a systematic heuristic for analyzing iconic gesture in semantic research.
- it is computable,
- provides a notion of multimodal incongruence.

Mixed topics

Non-lexicalized percepts

The inscription looked like this:

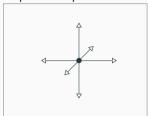
- What is the result of InfEval?
- No worries, there need not be one!
- A gesture that is such that it resists perceptual classification in terms of single words just contributes its iconic model (cf. spatial gesture semantics, Lect. 2).

"Energy spaces"

- Force vectors instead of spatial place or path ones.⁹
- Example: the semantics of *climb* is captured in terms of two forces: one pulling downwards, one striving upwards.

⁹ A. Goldschmidt and J. Zwarts (2016). "Hitting the nail on the head: Force vectors in verb semantics". In: Semantics and Linguistic Theory, 433–450; L. Talmy (1988). "Force dynamics in language and cognition". In: Cognitive Science 12, 49–100

"Energy spaces"


- Force vectors instead of spatial place or path ones.⁹
- Example: the semantics of *climb* is captured in terms of two forces: one pulling downwards, one striving upwards.
- Mathematical vector spaces are ontologically neutral.
- That is, the same formal devices can be used to model "energy spaces" consisting of force vectors

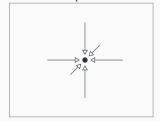
⁹ A. Goldschmidt and J. Zwarts (2016). "Hitting the nail on the head: Force vectors in verb semantics". In: Semantics and Linguistic Theory, 433–450; L. Talmy (1988). "Force dynamics in language and cognition". In: Cognitive Science 12, 49–100

"Energy spaces"

Speakers occupy the respective "center of gravity"

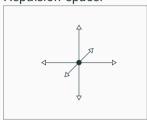
Repulsion space:


Attractor space:


"Energy spaces"

- Speakers occupy the respective "center of gravity"
- climbing: an energy space spanned by the orthogonal projections of force vectors onto the downwards and upwards pulling ones in repulsion space.

Repulsion space:


Attractor space:

"Energy spaces"

- Speakers occupy the respective "center of gravity"
- climbing: an energy space spanned by the orthogonal projections of force vectors onto the downwards and upwards pulling ones in repulsion space.
- Force vectors are arguably involved in verbal construction like on the one hand ... on the other hand: the two poles referred to are pulled apart by force vectors drawing in opposing directions.

Repulsion space:

Attractor space:

Repercussions for semantic theories

- The notion of meaning needed for InfEval is such that, when applied to an object, it returns a linguistic label.
- We spell this out in terms of perceptual classification, and the extemplification heuristic.
- Arguably, these components cannot be reconciled with a textbook possible worlds semantics.
- Are there alternatives?

The TTR, KoS, RTT "ecosystem"

A suitable candidate, to our minds, is a Type Theory with Records (TTR)¹⁰

- TTR incorporates words-as-classifiers 11
- TTR includes frames as both, situations and situation types
- \bullet It also provides the ontology for the dialogue semantic theory $\mathsf{KoS^{12}}$ (recall the importance of clarification interaction
- It underpins the most recent theory of pluralities and quantification, Referential Transparency Theory (RTT)¹³

¹⁰ R. Cooper (2023). From Perception to Communication. A Theory of Types for Action and Meaning. Oxford UP

¹¹ S. Larsson (2015). "Formal Semantics for Perceptual Classification". In: Journal of Logic and Computation 25, 335–369

 $^{^{12}}$ J. Ginzburg (2012). The Interactive Stance: Meaning for Conversation. Oxford UP

¹³ A. Lücking and J. Ginzburg (2022). "Referential transparency as the proper treatment of quantification". In: Semantics and Pragmatics 15, 1–58; A. Lücking and J. Ginzburg (2025). "Postmodern Quantification with Stuff". In: Proc. of *Sinn und Bedeutung*. Forthcoming

The TTR, KoS, RTT "ecosystem" and the SPA

- Addresses forgetting in dynamic information-state update semantics¹⁴
- ...by relating type theoretical semantics to spiking neuron simulations¹⁵
- \bullet ...from the Semantic Pointer Architecture (SPA). 16

¹⁴ J. Ginzburg, C. Eliasmith, and A. Lücking (2024). "Swann's name: Towards a Dialogical Brain Semantics". In: Proc. of the 28th Workshop on The Semantics and Pragmatics of Dialogue; J. Ginzburg and A. Lücking (2020). "On Laughter and Forgetting and Reconversing: A neurologically-inspired model of conversational context". In: Proc. of the 24th Workshop on the Semantics and Pragmatics of Dialogue

¹⁵ S. Larsson, R. Cooper, J. Ginzburg, and A. Lücking (2023). "TTR at the SPA: Relating type-theoretical semantics to neural semantic pointers". In: Proc. of Natural Logic Meets Machine Learning IV; S. Larsson, J. Ginzburg, R. Cooper, and A. Lücking (2025). "Finding Answers to Questions: Bridging between Type-based and Computational Neuroscience Approaches". In: 16th International Conference on Computational Semantics

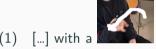
 $^{^{16}\,}$ C. Eliasmith (2013). How to Build a Brain: A Neural Architecture for Biological Cognition. Oxford UP

Appendix: Issueness

(Non-)at-issue

Mareike chooses the vegan pasta in the dining hall.

- at-issue: Mareike chooses the vegan pasta in the dining hall.
- non-at-issue (possible implicature): Mareike likes vegan pasta.
- non-at-issue (presupposition): There is vegan pasta in the dining hall.


1

(Non-)at-issue

Mareike does not choose the vegan pasta in the dining hall.

- at-issue: Mareike chooses the vegan pasta in the dining hall.
- non-at-issue (possible implicature): Mareike likes vegan pasta.
- non-at-issue (presupposition): There is vegan pasta in the dining hall.

From Lect. 1: Denial

roof over them

- a. ?No, that's [?] not true. The roof (i) is not $\langle * \rangle$ / (ii) actually is $\langle * \rangle$
- b. ?Wait a minute. The roof (i) is not $\langle * \rangle$ / actually is $\langle * \rangle$

3

 $^{^{17}{\}rm E.g.}$ P. Schlenker (2018). "Gesture projection and cosuppositions". In: Linguistics and Philosophy 41, 295–365

From Lect. 1: Denial

n a roof over them

- a. ?No, that's [?] not true. The roof (i) is not $\langle * \rangle$ / (ii) actually is $\langle * \rangle$
- b. ?Wait a minute. The roof (i) is not $\langle * \rangle$ / actually is $\langle * \rangle$

- We have already seen that gestures do not readily introduce linguistic predicates (only if this has been agreed upon in dialogue).
- And this neither at-issue ("No") and non-at-issue ("Wait a minute").
- Nonetheless, there has been claims that gestures are non-at-issue.¹⁷
- Can we shed more light on this?

3

¹⁷E.g. P. Schlenker (2018). "Gesture projection and cosuppositions". In: Linguistics and Philosophy 41, 295–365

Conditional meanings

- The conditioned interpretation heuristic literally puts the understanding of a multimodal utterance in the consequence of an indicative conditional ("If the gesture is InfEvaled to mean p, ...").
- Their consequences cannot be picked out by negation: The negation of a sentence of the form "If A then C" is either the conjunction "A and not C" or the conditional "If A then not C". 18.

¹⁸ P. Egré and G. Politzer (2013). "On the negation of indicative conditionals". In: Proc. of the 19th Amsterdam Colloquium, 10–18

Conditional meainings

- A: If the staircase is spiral, it is an imposing one.
- # B: No, that's not true. The staircase is imposing.
- B: No, that's not true. The staircase is imposing even without being spiral.

 Hence, we would expect contexts of conditioned, but not explicitly agreed, gesture interpretation to involve nondeniable consequences.

Ex.: Staircases

- If is interpreted as "spiral", then in the hall was an imposing spiral staircase.
- # No, that's not true. The staircase was actually straight
- No, that's not true. The staircase was actually straight, even if you interpret ____ as spiral.

(From "If A then C" and "A", "C" follows and can be negated.)

Further tests

- Ebert¹⁹ distinguishes additional non-at-issue tests for co-speech gestures.
- Let us look at ellipsis.

¹⁹ C. Ebert (2024). "Semantics of Gesture". In: Annual Review of Linguistics 10, 169–189

Ellipsis

• Co-speech gesture contribution is ignored in ellipsis constructions:

• In the hall was an imposing and a window, too.

staircas

Ellipsis

• If is interpreted as "spiral", then in the hall was an imposing spiral staircase, and a window, too.

 Of course, spiral does not need to take scope over window.

Upshot

InfEval of iconic gestures and conditioned interpretation can explain observations concerning the information status of linguistic descriptions of iconic gestures wrongly attributed to (non-)at-issueness elsewhere.