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Recap



Yesterday’s lecture

• World-to-word direction of fit
• Classifier-based (computational)

semantics

• Extemplification (extended
exemplification)

• Informational evaluation heuristic
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Today’s lecture

• ML Primer: learning paradigms
• Building models like ChatGPT
• Multimodal foundations
• Gesture‑detection pipeline
• Hands-on live demo
• Outlook & open questions

2



Introduction: Machine Learning, AI and
Multimodality



What is Machine Learning / AI?1

Artificial Intelligence (AI)
• Umbrella term for techniques that enable

machines to perform tasks we regard as
“intelligent” (reasoning, perception,
planning, language).

Machine Learning (ML)
• Sub‑field of AI: systems learn patterns

from data instead of relying on
hand‑crafted rules.

• Core ingredients: large data → model →
loss → optimisation rightarrow evaluation.

1 I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio (2016). Deep learning. Vol. 1. MIT press
Cambridge
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What is Machine Learning (ML)?3

• Instead of writing explicit rules,
ML finds patterns in data.

• At its core: ML = fitting a
function to data.

• Useful when the rules are too
complex, fuzzy, or unknown - e.g.,
how gestures vary across speakers
and contexts.

2

2https://amitrajan012.github.io/post/pattern-recognition-chapter-1-introduction_1/
3 C. M. Bishop and N. M. Nasrabadi (2006). Pattern recognition and machine learning. Vol. 4.

Springer
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How are Neural Networks trained?

Is the weather suitable for picnics?
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i1: temperature
i2: risk of rain
o: picnic score

4Template: https://tikz.net/regular-vs-bayes-nn/
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How are Neural Networks trained? - Example Input

Is the weather suitable for picnics?
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i1: temperature
i2: risk of rain
o: picnic score

5Template: https://tikz.net/regular-vs-bayes-nn/
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How are Neural Networks trained? - Backpropagation

Is the weather suitable for picnics?
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i1: temperature
i2: risk of rain
o: picnic score

6Template: https://tikz.net/regular-vs-bayes-nn/
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Learning Paradigms in ML7

• Supervised
• Unsupervised
• Self-Supervised
• Semi-Supervised
• Reinforcement

→ Learn to predict labels.
→ Find structure or clusters.
→ Predict part of data from other parts.
→ Leverage a few labels with lots of unlabeled data.
→ Learn good decisions over time.

7 C. M. Bishop and N. M. Nasrabadi (2006). Pattern recognition and machine learning. Vol. 4.
Springer; V. Rani et al. (2023). “Self-supervised learning: A succinct review”. In: Archives of
Computational Methods in Engineering 30, 2761–2775
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What ML Can (and Can’t) Do for Us8

Can do
• Detect classes even from noisy

data.
• Cluster and quantify variation.
• Learn useful representations from

raw data.
• Support large-scale studies of

form and use.

Can’t do
• Understand meaning on its own.
• Replace semantic theory or manual insight.
• Handle open-ended or subtle

communicative functions (yet).
• Guarantee fairness, explainability, or

trustworthiness out of the box.

8 E. M. Bender and A. Koller (2020). “Climbing towards NLU: On Meaning, Form, and
Understanding in the Age of Data”. In: Proc. of the 58th Annual Meeting of the Association for
Computational Linguistics, 5185–5198; G. Marcus and E. Davis (2019). Rebooting AI: Building
artificial intelligence we can trust. Vintage
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Embeddings: Representing Data as Vectors9

What are Embeddings?
• Continuous vector representation of

discrete items (words, tokens, images).
• Geometric proximity ⇔ semantic similarity.

Why Important for LLMs
• Input tokens mapped to embeddings

learned during training.
• Enable efficient dot‑products,

generalisation, and transfer across tasks. (Wikimedia Foundation, Inc. Original up- loader was Cbarr
(WMF), CC BY-SA 3.0, File:RobGrindes-shrug-143px.png)

9 T. Mikolov et al. (2013). “Distributed Representations of Words and Phrases and their
Compositionality”. In: Advances in Neural Information Processing Systems; T. Mikolov, K. Chen,
G. Corrado, and J. Dean (2013). “Efficient Estimation of Word Representations in Vector Space”. In:
1st International Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May
2-4, 2013, Workshop Track Proceedings
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Attention Mechanism10

• Dynamically weights input elements based
on relevance.

• Self‑attention: queries, keys, values from
same sequence.

• Multi‑head: parallel views capture diverse
relations.

• Powers the Transformer architecture and
modern LLMs. https:

//jalammar.github.io/illustrated-transformer/ (CC
BY-NC-SA 4.0)

10 A. Vaswani et al. (2017). “Attention is All you Need”. In: Advances in Neural Information
Processing Systems

11

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/


(Multimodal) Large Language Models



How to train my own ChatGPT12

1. Data Collection &
Preprocessing

2. (Self-supervised) Pretraining
3. Post-Training

4. Evaluation
5. Deployment & Iteration

→ Clean, filter, deduplicate, normalize, tokenize.

→ Next-token prediction.
→ Reinforcement Learning from Human Feedback

(RLHF)11.
→ For performance, safety, bias, hallucination.
→ Frequent monitoring and updated.

11 L. Ouyang et al. (2022). “Training language models to follow instructions with human feedback”.
In: Proc. of the 36th International Conference on Neural Information Processing Systems
12 OpenAI et al. (2024). GPT-4 Technical Report. arXiv: 2303.08774 [cs.CL]

12

https://arxiv.org/abs/2303.08774


Step 1: Data Collection & Preprocessing13

Goal:
Prepare high-quality, diverse input for
training.

Sources:

• Web text

• Books, Wikipedia

• Forums, code repositories

• Internal/proprietary data

→ Filtering: remove low-quality, toxic, or
irrelevant content.

→ Deduplication: avoid overfitting to repeated
content.

→ Normalization: standardize text (e.g.,
lowercase, punctuation).

→ Tokenization: convert text into input tokens.
→ Balancing: ensure coverage across domains

(e.g., code vs. dialogue).

13 L. Gao et al. (2020). The Pile: An 800GB Dataset of Diverse Text for Language Modeling. arXiv:
2101.00027 [cs.CL]

13

https://arxiv.org/abs/2101.00027


Excursus: What is Tokenization in the Context of LLMs?14

Goal:
Convert raw text into units the model
can understand.

Why not characters or words?

• Characters: too granular,
inefficient

• Words: ambiguous, too many

• Tokens: trade-off

→ Use subword units (e.g. “play“, “#ing“; “un“,
“#believable“).

→ Based on algorithms like Byte-Pair Encoding
(BPE) or Unigram LM.

→ Allows handling of rare and unknown words.
→ Example: "I really enjoyed my time in

Bochum." → ["I", "really", "enjoy",
"#ed", "my", "time", "in", "Boch",
"#um", "."]

14https://huggingface.co/docs/transformers/tokenizer_summary
14
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Step 2: (Self-supervised) Pretraining

Goal:
Teach the model general language
understanding.

Method:

• Predict next token

• No human labels needed

• Very large dataset

→ Objective: P(tokent | token1..t−1)

→ Transformer architecture (e.g. decoder-only).
→ Trained on trillions of tokens.
→ Requires massive compute (TPUs, GPUs).
→ Learns grammar, facts, reasoning, coding

patterns.

15



Step 3: Post-Training (Alignment)

Goal:
Make the model helpful, safe, and
aligned with human values.

Steps:

• Supervised fine-tuning (SFT)

• RLHF (Reinforcement Learning
from Human Feedback)15

→ Human-written prompt-response pairs.
→ Rank model outputs → train a reward model.
→ Fine-tune the base model using Reinforcement

Learning.
→ Encourages helpful and non-toxic responses.
→ Aligns model with human intent.

15 Y. Bai et al. (2022). Training a Helpful and Harmless Assistant with Reinforcement Learning from
Human Feedback. arXiv: 2204.05862 [cs.CL]
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Step 4: Evaluation16

Goal:
Assess model quality, safety, and
behavior before release.

Types:

• Quantitative tests

• Human evaluations

• Red-teaming

→ Benchmarking (MMLU, HellaSwag, etc.).
→ Prompt diversity testing and edge cases.
→ Detect bias, toxicity, hallucinations.
→ Internal and external safety audits.
→ Analyze model confidence and calibration.

16 Y. Chang et al. (2024). “A survey on evaluation of large language models”. In: ACM transactions
on intelligent systems and technology 15, 1–45
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Step 5: Deployment & Iteration

Goal:
Safely deploy the model and keep
improving it through usage.

Cycle:

• Launch → Monitor → Improve

• Continuous feedback loop

→ Model exposed via APIs, apps (e.g. ChatGPT).
→ Usage analytics + human feedback collected.
→ Updates: bugfixes, safety patches, new

features.
→ Ongoing fine-tuning and A/B testing.
→ Data pipeline refinement based on usage.

18



Step 6a: Image Encoder17

Goal:
Convert an image into a vector
representation (embeddings).

Common Encoders:

• CLIP (ViT)

• ResNet

• SigLIP

• Vision Transformer (ViT)

→ Input: raw image pixels
→ Output: sequence of image embeddings (like

tokens)
→ Pretrained on image-text pairs (e.g., from web)
→ Encoded images are fed into the language

model as part of the prompt
→ Can capture visual objects, layout, and spatial

info

17 A. Radford et al. (2021). “Learning Transferable Visual Models From Natural Language
Supervision”. In: CoRR abs/2103.00020. arXiv: 2103.00020
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Step 6b: Aligning Modalities18

Goal:
Bridge the gap between visual and
textual representations.

Why align?

• Image + text are from different
distributions

• Need unified input for
Transformer

→ Projection Layer: maps image embeddings to
LLM token space

→ Concatenation: image embeddings placed
before or between text tokens

→ Joint Training: learn to ground vision in
language tasks

→ Enables multimodal reasoning, captioning, and
VQA

18 H. Liu, C. Li, Q. Wu, and Y. J. Lee (2023). “Visual instruction tuning”. In: Advances in neural
information processing systems 36, 34892–34916
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Step 6c: Multimodal Training Tasks19

Goal:
Teach the model to understand and
reason over image-text pairs.

Common Task Types:

• Image captioning

• Visual question answering
(VQA)

• OCR + scene text recognition

• Referring expression resolution

→ Image → Text: Generate captions or
summaries

→ Image + Text → Text: Answer questions
about the image

→ Use instruction-following prompts: "Describe
this image.", "Where is the cat?"

→ Supervised training followed by instruction
tuning

→ Important for grounding language in perception

19 Y. Zhang et al. (2024). LLaVAR: Enhanced Visual Instruction Tuning for Text-Rich Image
Understanding. arXiv: 2306.17107 [cs.CV]

21

https://arxiv.org/abs/2306.17107


Excursus: Let’s take a look at this type of data set.

http://captions.christoph-schuhmann.de/eval_laion/eval.html
https://laion.ai/projects/

22
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Scaling and Advanced Concepts

Goal:
Push efficiency, capability, and scalability
of large models.

Key Concepts:

• Mixture of Experts (MoE)

• Sparse Attention

• Retrieval-Augmented Generation
(RAG)

• Instruction Tuning

→ MoE: Only a subset of model components
(experts) is activated per input. Greatly
reduces compute cost while increasing
parameter count.

→ Sparse Attention: Improves efficiency in
very long-context models. Models learn to
focus selectively.

→ RAG: Combines LLMs with external
search/indexes. Augments generation with
real-world knowledge.

→ Instruction Tuning: Further trains
models to follow natural language
commands more reliably. Key to usability.

23



Reducing LLMs in Size20

Why shrink models?
• Lower inference latency and

energy cost.
• Fit on‑device / edge hardware.
• Enable private, offline use.
• Reduce carbon footprint.

Main techniques
• Quantization: 8‑bit/4‑bit weights.
• Pruning: remove redundant weights or

neurons.
• Distillation: train a smaller student on

teacher outputs.
• PEFT: LoRA, Adapters, . . .

20 S. Park, J. Choi, S. Lee, and U. Kang (2024). A Comprehensive Survey of Compression Algorithms
for Language Models. arXiv: 2401.15347 [cs.CL]

24

https://arxiv.org/abs/2401.15347


Where is this going?21

21https://ourworldindata.org/grapher/artificial-intelligence-parameter-count 25

https://ourworldindata.org/grapher/artificial-intelligence-parameter-count


Where is this going?22

22https://informationisbeautiful.net/visualizations/
the-rise-of-generative-ai-large-language-models-llms-like-chatgpt/

26
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Critical Reflections on Large Language Models

Scaling is powerful, but not free

Open Issues:
• Environmental cost
• Evaluation transparency
• Data ethics
• Model accessibility

→ Compute cost: training GPT-3 used hundreds
of PFLOPs-days; carbon footprint estimated at
hundreds of tons CO23.

→ Financial cost: GPT-4-level training estimated
at millions of dollars; access to compute
increasingly centralized24.

→ Data concerns: Training data scraped from
the web—raises copyright, consent, and
fairness issues25.

→ Evaluation gaps: Benchmarks often narrow
and do not capture robustness, fairness, or
real-world alignment26.

23https://news.mit.edu/2025/explained-generative-ai-environmental-impact-0117
24https://hai.stanford.edu/ai-index/2025-ai-index-report (page 65)
25 P. Samuelson (2023). “Generative AI meets copyright”. In: Science 381, 158–161
26 T. R. McIntosh et al. (2025). “Inadequacies of large language model benchmarks in the era of
generative artificial intelligence”. In: IEEE Transactions on Artificial Intelligence

27
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Gesture Detection



Step 1: Video Input

Input Type:
• Usually RGB frames or video

stream
• Optionally with depth or IR

Preprocessing:
• Resize, normalize
• Frame extraction or windowing
• Optional face/hands segmentation

Challenges:
• Varying lighting and backgrounds
• Occlusion (e.g. hands crossing)
• Real-time constraints (latency, FPS)
• Device variability (camera quality)

28



Step 2: Hand Pose Detection

Goal: Localize key hand joints
(2D/3D)

• Wrist, knuckles, fingertips
• Input: video frame or cropped

hand region

• Accuracy depends on input quality and
occlusions

• Trade-off between model size and speed
• 3D pose enables gesture generalization

(rotation invariance)
• Tracking is often fused with detection for

consistency

29



Excursus: Two Pipelines for Pose Estimation27

Top‑Down (two‑step)
• Detect each person/hand first (e.g.

bounding box).
• Run a pose/gesture network inside

every box.
• Pros: high single‑instance accuracy;

leverages powerful object detectors.
• Cons: time scales #people; errors

cascade from detector;

Bottom‑Up (part‑based)
• Detect all keypoints in the frame at

once.
• Group points into individuals via

part‑affinity / clustering.
• Pros: cost nearly constant to crowd

size; robust to missed boxes.
• Cons: grouping step can fail in heavy

occlusion; slightly lower peak
accuracy.

27 R. Yue, Z. Tian, and S. Du (2022). “Action recognition based on RGB and skeleton data sets: A
survey”. In: Neurocomputing 512, 287–306
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Excursus: Common Models

• MediaPipe28 (Google) - Lightweight, real-time framework for hand pose (21 keypoints
per hand). Ideal for single-person tracking on mobile and web. Integrated into many apps
and easy to use.

• OpenPose29 (CMU) - Pose model supporting hands, body, and face. Requires GPU.
Strong multi-person support. Still a popular baseline in research.

• MMPose30 (OpenMMLab) - Modular PyTorch framework supporting many backbones
and datasets. Includes whole-body hand keypoints and supports both 2D and 3D models.
Great for custom experiments.

• Sapiens31 (Meta) - Newest, high-resolution foundation model with 308 keypoints
(including hands). Designed for detailed, frame-by-frame offline analysis, not real-time
use.

28https://github.com/google-ai-edge/mediapipe
29https://github.com/CMU-Perceptual-Computing-Lab/openpose
30https://github.com/open-mmlab/mmpose
31https://github.com/facebookresearch/sapiens

31
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Step 3: Feature Encoding32

Goal: Convert hand pose data into
useful input features for ML models.

• Raw 2D/3D keypoints
• Distances between joints
• Angles between fingers
• Motion vectors (velocity,

acceleration)

Feature Types:
• Frame-based (pose snapshot)
• Sequence-based (temporal movement)
• Hand-crafted vs. deep-learned embeddings
• Normalize for translation, scale, rotation

32 P. Molchanov et al. (2016). “Online Detection and Classification of Dynamic Hand Gestures with
Recurrent 3D Convolutional Neural Networks”. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 4207–4215

32



Step 4: ML Model Training33

Input: Encoded features or pose
sequences

Common Models:
• Classical ML: SVM, k-NN,

Random Forest
• Deep Learning: MLP, CNN,

LSTM, Transformers
• Spatio-temporal models for

gesture dynamics

Training Considerations:
• Supervised learning with gesture labels.
• Augment data for generalization.
• Cross-subject and cross-session robustness.

33 J. J. Ojeda-Castelo, M. d. L. M. Capobianco-Uriarte, J. A. Piedra-Fernandez, and R. Ayala (2022).
“A survey on intelligent gesture recognition techniques”. In: IEEE Access 10, 87135–87156

33



Step 5: Gesture Prediction34

Goal: Classify or detect user gestures
in real-time.

Output Types:
• Static: e.g., ”Thumbs up”, ”Open

hand”
• Dynamic: e.g., ”Swipe left”,

”Draw circle”

Deployment:
• Smooth output with tracking or temporal

smoothing.
• Handle uncertain input with confidence

thresholds.

34 P. Molchanov et al. (2016). “Online Detection and Classification of Dynamic Hand Gestures with
Recurrent 3D Convolutional Neural Networks”. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 4207–4215

34



Hands On Example



EnvisionBOX (https://github.com/aluecking/ESSLLI2025 )

35

https://github.com/aluecking/ESSLLI2025


EnvisionBOX (https://envisionbox.org/ )

36

https://envisionbox.org/


Future Directions



Where are the LLMs for Gesture Detection?36

Data & Representation
• Sparse paired data: very few

corpora link gesture key-points +
language; most instruction sets only
contain captions.

• Temporal mismatch: LLMs digest
static images; gestures are >30 FPS
sequences ⇒ token explosion.

• Modality gap: 2-D RGB misses
depth, skeleton cues essential for
fine-grained hand motion.

Model Capabilities
• Spatial precision: overlay-based

prompting (e.g. ViP-LLaVA) leaves 3-D
joint reasoning unsolved.35

• Reasoning granularity: current
MLLMs excel at object semantics, but
struggle with fine motor actions (pinch,
swipe).

• Safety/bias: ambiguous gestures vary
culturally; no robust alignment or
policy-tuning yet.

35 M. Cai et al. (2024). “Making Large Multimodal Models Understand Arbitrary Visual Prompts”. In:
IEEE Conference on Computer Vision and Pattern Recognition
36 D. Feng et al. (2025). “PoseLLaVA: Pose Centric Multimodal LLM for Fine-Grained 3D Pose
Manipulation”. In: Proceedings of the AAAI Conference on Artificial Intelligence 39, 2951–2959;
D. Zhang, T. Hussain, W. An, and H. Shouno (2025). LLaVA-Pose: Enhancing Human Pose and
Action Understanding via Keypoint-Integrated Instruction Tuning. arXiv: 2506.21317 [cs.CV]

37
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Where are the LLMs for Gesture Detection?

PoseLLaVA37

• Model changes: adds a pose encoder
plus a cross-attention into LLaVA for
global & local pose-image.

• Created datasets: adds PosePart (135
K single-body-part triplets) and
combines Human3.6M (300 K),
PoseScript (100 K) and PoseFix (135
K).

• Finetuning task: three-stage pipeline:
pose-image contrastive pre-align, LLM
pre-train on pose generation, unified
instruction-tuning over estimation /
generation / adjustment.

LLaVA-Pose38

• Model changes: no architectural edits
- retains LLaVA-1.5 and simply
augments prompts with 2-D keypoints.

• Created datasets: auto-generates
200328 COCO-based keypoint-aware
instructions (conversation /
description / reasoning); also
publishes the E-HPAUB benchmark
for evaluation.

• Finetuning task: full-model fine-tune
for one epoch; objective is richer chat,
description & reasoning about human
pose/action scenes.

37 D. Feng et al. (2025). “PoseLLaVA: Pose Centric Multimodal LLM for Fine-Grained 3D Pose
Manipulation”. In: Proceedings of the AAAI Conference on Artificial Intelligence 39, 2951–2959
38 D. Zhang, T. Hussain, W. An, and H. Shouno (2025). LLaVA-Pose: Enhancing Human Pose and
Action Understanding via Keypoint-Integrated Instruction Tuning. arXiv: 2506.21317 [cs.CV]

38
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Concept: Meta-Transformer39

39 Y. Zhang et al. (2023). “Meta-transformer: A unified framework for multimodal learning”. In:
arXiv preprint arXiv:2307.10802

39



Why most LLMs stay text & image40

• Compute / memory - universal tokens make long sequences; self‑attention costly.
• Limited generative - good at unimodal perception, unclear for cross‑modal generation.
• Dataset gaps - few richly multimodal pairs to unlock full promise.
• Data scale - trillions of web tokens, billions of captions; far fewer paired corpora.
• Token explosion - 10s of 30FPS video ≈ 900 frames ⇒ hundreds of tokens.
• ROI focus - chat, code, doc QA, image help already monetize; niche sensors give

uncertain payoff.
• Tooling maturity - CLIP/LLaVA pipelines are production‑ready; multimodal 3‑D/audio

stacks still research‑grade.
40 A. Henlein et al. (2024). “An Outlook for AI Innovation in Multimodal Communication Research”.
In: Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk
Management, 182–234; J. Jiang et al. (2025). Token-Efficient Long Video Understanding for
Multimodal LLMs. arXiv: 2503.04130 [cs.CV]; A. Kumar, M. M. Salim, D. Camacho, and
J. H. Park (2025). “A comprehensive survey on large language models for multimedia data security:
challenges and solutions”. In: Computer Networks 267, 111379; Y. Zhang et al. (2023).
“Meta-transformer: A unified framework for multimodal learning”. In: arXiv preprint arXiv:2307.10802

40

https://arxiv.org/abs/2503.04130


Va.Si.Li-Lab41

• A VR-based simulation system.
• Multi-user collaborative tool.
• Users are represented by Meta Avatars.

41 A. Mehler et al. (2023). “A Multimodal Data Model for Simulation-Based Learning with
Va.Si.Li-Lab”. In: Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk
Management, 539–565

41



Va.Si.Li-Lab

42



SaGA 2.0: FraGA42

42 A. Lücking et al. (2010). “The Bielefeld Speech and Gesture Alignment Corpus (SaGA)”. In:
Multimodal Corpora: Advances in Capturing, Coding and Analyzing Multimodality. 7th International
Conference for Language Resources and Evaluation, 92–98

43



SaGA 2.0: FraGA43

73 dialogues involving 146 speakers.

Speaking time # Tokens
total: 12:44:37 92,923

Router: 8:17:19 70,517
Follower: 4:27:18 22,406

Avg. Router: 0:06:49 1,273
Avg. Follower: 0:03:40 966
Avg. Dialogue: 0:10:28 307

43 Lücking, Voll, Rott, Henlein, Mehler (2025). “Head and hand movements during turn transitions:
data-based multimodal analysis using the Frankfurt VR Gesture–Speech Alignment Corpus (FraGA)”.
In: accepted. 29th edition of the SemDial workshop series
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