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Yesterday's lecture

e World-to-word direction of fit e Extemplification (extended

e Classifier-based (computational) exemplification)

semantics e Informational evaluation heuristic



Today’s lecture

e ML Primer: learning paradigms
Building models like ChatGPT

Multimodal foundations

Gesture-detection pipeline

Hands-on live demo

Outlook & open questions



Introduction: Machine Learning, Al and
Multimodality



What is Machine Learning / AlI??

Artificial Intelligence (Al)

e Umbrella term for techniques that enable
machines to perform tasks we regard as
“intelligent” (reasoning, perception,
planning, language).

Machine Learning (ML)

e Sub-field of Al: systems learn patterns
from data instead of relying on
hand-crafted rules.

e Core ingredients: large data — model —
loss — optimisation rightarrow evaluation.

1 I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio (2016). Deep learning. Vol. 1. MIT press
Cambridge



What is Machine Learning (ML)?3

1 oo M=0 1 oo M=1

e Instead of writing explicit rules, :
ML finds patterns in data. ‘

e At its core: ML = fitting a -
function to data.

e Useful when the rules are too \
complex, fuzzy, or unknown - e.g.,
how gestures vary across speakers
and contexts.

*https://amitrajan012.github.io/post/pattern-recognition-chapter-1-introduction_1/
3 C. M. Bishop and N. M. Nasrabadi (2006). Pattern recognition and machine learning. Vol. 4.
Springer


https://amitrajan012.github.io/post/pattern-recognition-chapter-1-introduction_1/

How are Neural Networks trained?

Is the weather suitable for picnics?
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How are Neural Networks trained? - Example Input

Is the weather suitable for picnics?

\Ol

0.1 \ \ il: temperature
-1.0 a o o
01 th.0224 05  0.0748 i2: risk of rain
/ 03 / 0: picnic score

g
0.8 (25 °C) 0.8

o5 & 0.2
0.48 /

STemplate: https://tikz.net/regular-vs-bayes-nn/


https://tikz.net/regular-vs-bayes-nn/

How are Neural Networks trained? - Backpropagation

Is the weather suitable for picnics?
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Learning Paradigms in ML’

e Supervised — Learn to predict labels.

e Unsupervised — Find structure or clusters.

e Self-Supervised — Predict part of data from other parts.

e Semi-Supervised — Leverage a few labels with lots of unlabeled data.
e Reinforcement — Learn good decisions over time.

" C. M. Bishop and N. M. Nasrabadi (2006). Pattern recognition and machine learning. Vol. 4.
Springer; V. Rani et al. (2023). “Self-supervised learning: A succinct review”. In: Archives of
Computational Methods in Engineering 30, 2761-2775



What ML Can (and Can’t) Do for Us®

Can do
Can’t do

e Detect classes even from noisy . .

. e Understand meaning on its own.

. . o e Replace semantic theory or manual insight.
e Cluster and quantify variation. P y &
. e Handle open-ended or subtle
e Learn useful representations from .. .
communicative functions (yet).
raw data. _ o
e Guarantee fairness, explainability, or

e Support large-scale studies of

trustworthiness out of the box.
form and use.

8 E. M. Bender and A. Koller (2020). “Climbing towards NLU: On Meaning, Form, and
Understanding in the Age of Data”. In: Proc. of the 58th Annual Meeting of the Association for
Computational Linguistics, 5185-5198; G. Marcus and E. Davis (2019). Rebooting Al: Building
artificial intelligence we can trust. Vintage



Embeddings: Representing Data as Vectors’

What are Embeddings?

e Continuous vector representation of Paris

discrete items (words, tokens, images). /-
France
e Geometric proximity < semantic similarity.
Why Important for LLMs

. GerV
e Input tokens mapped to embeddings

learned during training.

Berlin
L ]

e Enable efficient dot-products,
generalisation, and transfer across tasks.

(Wikimedia Foundation, Inc. Original up- loader was Cbarr
(WMF), CC BY-SA 3.0, File:RobGrindes-shrug-143px.png)

® T. Mikolov et al. (2013). "Distributed Representations of Words and Phrases and their
Compositionality”. In: Advances in Neural Information Processing Systems; T. Mikolov, K. Chen,
G. Corrado, and J. Dean (2013). “Efficient Estimation of Word Representations in Vector Space”. In:
1st International Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May
2-4, 2013, Workshop Track Proceedings

10



Attention Mechanism?'®

Layer:| 5 % Attention: | Input - Input

The_ The_
Dynamically weights input elements based Brimal animal.
idn_ ian_
on relevance. a "
- . ‘_ t_
Self-attention: queries, keys, values from oross._ cross_
the_ the_
same sequence. st street.
. ) . because_ because_
Multi-head: parallel views capture diverse a e
0 was_ was_
relations. o o0
. tire
Powers the Transformer architecture and d d

modern LLMs.

https:

//jalammar.github.io/illustrated-transformer/ (CC

BY-NC-SA 4.0)

10 A Vaswani et al. (2017). “Attention is All you Need”. In: Advances in Neural Information

Processing Systems
1


https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

(Multimodal) Large Language Models




How to train my own ChatGPT*?

1. Data Collection & — Clean, filter, deduplicate, normalize, tokenize.
Preprocessing

2. (Self-supervised) Pretraining  _, Next-token prediction.

- Post-Training — Reinforcement Learning from Human Feedback
(RLHF),
4. Evaluation — For performance, safety, bias, hallucination.
5. Deployment & Iteration — Frequent monitoring and updated.

L. Quyang et al. (2022). “Training language models to follow instructions with human feedback”.
In: Proc. of the 36th International Conference on Neural Information Processing Systems

12 OpenAl et al. (2024). GPT-4 Technical Report. arXiv: 2303.08774 [cs.CL]
12


https://arxiv.org/abs/2303.08774

Step 1: Data Collection & Preprocessing®®

Goal: — Filtering: remove low-quality, toxic, or
Prepare high-quality, diverse input for el lavE @erETE
training. . o L
— Deduplication: avoid overfitting to repeated
Sources: content.
o Web text — Normalization: standardize text (e.g.,
e Books, Wikipedia lowercase, punctuation).

4

o Tokenization: convert text into input tokens.
e Forums, code repositories

d

Balancing: ensure coverage across domains

e Internal/proprietary data (e.g., code vs. dialogue),

13 L. Gao et al. (2020). The Pile: An 800GB Dataset of Diverse Text for Language Modeling. arXiv:
2101.00027 [cs.CL]
13


https://arxiv.org/abs/2101.00027

Excursus: What is Tokenization in the Context of LLMs?!*

Goal: —
Convert raw text into units the model
can understand.

Why not characters or words?

3

e Characters: too granular,
inefficient

+

e Words: ambiguous, too many

e Tokens: trade-off

Use subword units (e.g. “play"”, “#ing"; “un",
“#believable").

Based on algorithms like Byte-Pair Encoding
(BPE) or Unigram LM.

Allows handling of rare and unknown words.
Example: "I really enjoyed my time in
Bochum." — ["I", "really", "enjoy",
H#edll s Ilmyll s "timell s Ilinll s "Bochll s
"Hum" ) L ||]

“nttps://huggingface.co/docs/transformers/tokenizer_summary

14


https://huggingface.co/docs/transformers/tokenizer_summary

Step 2: (Self-supervised) Pretraining

Goal:
Teach the model general language

Objective: P(token; |tokenj ¢ 1)
understanding.

Transformer architecture (e.g. decoder-only).

Method: Trained on trillions of tokens.

e Predict next token Requires massive compute (TPUs, GPUs).

L L Ll

Learns grammar, facts, reasoning, coding
patterns.

e No human labels needed

e Very large dataset

15



Step 3: Post-Training (Alignment)

Goal:

Make the model helpful, safe, and — Human-written prompt-response pairs.

aligned with human values. — Rank model outputs — train a reward model.
Steps: — Fine-tune the base model using Reinforcement

e Supervised fine-tuning (SFT) HEETH

« RLHF (Reinforcement Learning — Encourages helpful and non-toxic responses.

from Human Feedback)'s — Aligns model with human intent.

15 Y. Bai et al. (2022). Training a Helpful and Harmless Assistant with Reinforcement Learning from

Human Feedback. arXiv: 2204.05862 [cs.CL]
16


https://arxiv.org/abs/2204.05862

Step 4: Evaluation?'®

Goal:
Assess model quality, safety, and
behavior before release.

Benchmarking (MMLU, HellaSwag, etc.).

- Prompt diversity testing and edge cases.
ypes: . .. .
Detect bias, toxicity, hallucinations.
e Quantitative tests .
Q Internal and external safety audits.

e Human evaluations

L Ll

Analyze model confidence and calibration.
e Red-teaming

16 Y. Chang et al. (2024). “A survey on evaluation of large language models”. In: ACM transactions

on intelligent systems and technology 15, 1-45
17



Step 5: Deployment & lteration

Goal: .
Safely deploy the model and keep — Model exposed via APIs, apps (e.g. ChatGPT).
improving it through usage. — Usage analytics + human feedback collected.

— Updates: bugfixes, safety patches, new

S features.

o Laumdn = Weslier = lmpeve Ongoing fine-tuning and A/B testing.

e Continuous feedback loop — Data pipeline refinement based on usage.

18



Step 6a: Image Encoder!’

Goal:
Convert an image into a vector — Input: raw image pixels
representation (embeddings). — Output: sequence of image embeddings (like
Common Encoders: tokens)
e CLIP (ViT) — Pretrained on image-text pairs (e.g., from web)
- — Encoded images are fed into the language
o Resiet model as part of the prompt
o SigLIP — Can capture visual objects, layout, and spatial
e Vision Transformer (ViT) info

17 A. Radford et al. (2021). “Learning Transferable Visual Models From Natural Language

Supervision”. In: CoRR abs/2103.00020. arXiv: 2103.00020
19


https://arxiv.org/abs/2103.00020

Step 6b: Aligning Modalities'®

Goal:
Bridge the gap between visual and
textual representations.

— Projection Layer: maps image embeddings to
LLM token space

— Concatenation: image embeddings placed

Why align? before or between text tokens
e Image + text are from different — Joint Training: learn to ground vision in
distributions |anguage tasks
e Need unified input for — Enables multimodal reasoning, captioning, and
Transformer VQA

8 H. Liu, C. Li, Q. Wu, and Y. J. Lee (2023). "Visual instruction tuning"”. In: Advances in neural

information processing systems 36, 34892—-34916
20



Step 6¢c: Multimodal Training Tasks!’

Goal:
Teach the model to understand and ~ — lmage — Text: Generate captions or
reason over image-text pairs. summaries

— Image 4+ Text — Text: Answer questions

C Task T : i
ommon Task Types about the image

0 lraze e=pifteming — Use instruction-following prompts: "Describe

e Visual question answering this image.", "Where is the cat?"

(VQA) — Supervised training followed by instruction
e OCR + scene text recognition tuning

e Referring expression resolution — Important for grounding language in perception

19°Y. Zhang et al. (2024). LLaVAR: Enhanced Visual Instruction Tuning for Text-Rich Image

Understanding. arXiv: 2306.17107 [cs.CV]
21


https://arxiv.org/abs/2306.17107

Excursus: Let’s take a look at this type of data set.

http://captions.christoph-schuhmann.de/eval_laion/eval.html
https://laion.ai/projects/

22


http://captions.christoph-schuhmann.de/eval_laion/eval.html
https://laion.ai/projects/

Scaling and Advanced Concepts

— MoE: Only a subset of model components

Goal: (experts) is activated per input. Greatly
Push efficiency, capability, and scalability reduces compute cost while increasing
of large models. parameter count.

— Sparse Attention: Improves efficiency in
very long-context models. Models learn to
focus selectively.

Key Concepts:
e Mixture of Experts (MoE)

® Sparse Attention — RAG: Combines LLMs with external

e Retrieval-Augmented Generation search /indexes. Augments generation with
(RAG) real-world knowledge.

e Instruction Tuning — Instruction Tuning: Further trains

models to follow natural language
commands more reliably. Key to usability.

23



Reducing LLMs in Size®

Why shrink models? Main techniques
e Lower inference latency and e Quantization: 8-bit/4-bit weights.
energy cost. e Pruning: remove redundant weights or
e Fit on-device / edge hardware. neurons.
e Enable private, offline use. e Distillation: train a smaller student on

teacher outputs.
e PEFT: LoRA, Adapters, ...

e Reduce carbon footprint.

2 S Park, J. Choi, S. Lee, and U. Kang (2024). A Comprehensive Survey of Compression Algorithms

for Language Models. arXiv: 2401.15347 [cs.CL]
24


https://arxiv.org/abs/2401.15347

Where is this going

Paramelers in notable artificial intelligence systems

Parameters are variables in an Al system whose values are adjusted during training to establish how input data
gets transformed into the desired output; for example, the connection weights in an artificial neural network.

Number of parameters

1 trillion B Academia
W Academia and industry
100 billion collaboration
W Industry
10 billion o Other
1 billion
100 million
10 million
1 million .
100,000
.
10,000 LR
. o ® ¢
1,000 o o
. . .
100
X3 .

o
10 * .
Jul2,1950  Apr 19, 1965 Dec 27,1978 Sep 4, 1992 May 14, 2006 Jan 21, 2020
Publication date

Data source: Epoch (2025) OurWorldinData.c rtificial-intelligence | CC BY

Note: Parameters are estimated based on published results in the Al literature and come with some uncertainty. The authors expect the
estimates to be correct within a factor of 10.

Anttps://ourworldindata.org/grapher/artificial-intelligence-parameter-count -


https://ourworldindata.org/grapher/artificial-intelligence-parameter-count

Where is this going?

Major Large Language Models (LLMs) rmeenn e
ranked by capabilities, sized by billion parameters used for training
CUCKLEGEND TEMS TO FLTER
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20 /AMD-Llama-135m
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David McCandiess, Tom Evans, Paul Barton

MMLU = benchmark for measuring LLM capabilties
* = parameters undisclosed / source: LifeArchitect / data

Znttps://informationisbeautiful .net/visualizations/
the-rise-of-generative-ai-large-language-models-11lms-1like-chatgpt/

26


https://informationisbeautiful.net/visualizations/the-rise-of-generative-ai-large-language-models-llms-like-chatgpt/
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Critical Reflections on Large Language Models

— Compute cost: training GPT-3 used hundreds
of PFLOPs-days; carbon footprint estimated at

Scaling is powerful, but not free hundreds of tons CO?3.
— Financial cost: GPT-4-level training estimated

Open lIssues: at millions of dollars; access to compute

e Environmental cost increasingly centralized?*.
e Evaluation transparency — Data concerns: Training data scraped from
e Data ethics the web—raises copyright, consent, and

ep fairness issues2®.
e Model accessibility

— Evaluation gaps: Benchmarks often narrow
and do not capture robustness, fairness, or
real-world alignment?6.
Bnttps://news.mit.edu/2025/explained-generative-ai-environmental-impact-0117
*nttps://hai.stanford.edu/ai-index/2025-ai-index-report (page 65)
% P, Samuelson (2023). “Generative Al meets copyright”. In: Science 381, 158-161
% T.R. McIntosh et al. (2025). “Inadequacies of large language model benchmarks in the era of 27
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Gesture Detection




Step 1: Video Input

Input Type:
e Usually RGB frames or video
stream Challenges:
e Optionally with depth or IR e Varying lighting and backgrounds

e Occlusion (e.g. hands crossing)
Preprocessing: e Real-time constraints (latency, FPS)
® Resize, normalize e Device variability (camera quality)
e Frame extraction or windowing

e Optional face/hands segmentation

28



Step 2: Hand Pose Detection

Goal: Localize key hand joints
(2D/3D)
e Wrist, knuckles, fingertips

e Input: video frame or cropped
hand region

Accuracy depends on input quality and
occlusions

Trade-off between model size and speed

3D pose enables gesture generalization
(rotation invariance)

Tracking is often fused with detection for
consistency

29



Excursus: Two Pipelines for Pose Estimation?’

Bottom-Up (part-based)

e Detect all keypoints in the frame at
once.

Top-Down (two-step)

e Detect each person/hand first (e.g.

bounding box).
) e Group points into individuals via

e Run a pose/gesture network inside part-affinity / clustering.

every box.
e Pros: cost nearly constant to crowd

e Pros: high single-instance accuracy; cize: robust to missed boxes

leverages powerful object detectors.
e Cons: grouping step can fail in heavy

occlusion; slightly lower peak
accuracy.

e Cons: time scales #people; errors
cascade from detector;

2" R. Yue, Z. Tian, and S. Du (2022). “Action recognition based on RGB and skeleton data sets: A

survey”. In: Neurocomputing 512, 287-306
30



Excursus: Common Models

e MediaPipe®® (Google) - Lightweight, real-time framework for hand pose (21 keypoints
per hand). Ideal for single-person tracking on mobile and web. Integrated into many apps
and easy to use.

e OpenPose* (CMU) - Pose model supporting hands, body, and face. Requires GPU.
Strong multi-person support. Still a popular baseline in research.

e MMPose*® (OpenMMLab) - Modular PyTorch framework supporting many backbones
and datasets. Includes whole-body hand keypoints and supports both 2D and 3D models.
Great for custom experiments.

e Sapiens®! (Meta) - Newest, high-resolution foundation model with 308 keypoints
(including hands). Designed for detailed, frame-by-frame offline analysis, not real-time
use.

https://github. com/google-ai-edge/mediapipe
Pnttps://github. com/CMU-Perceptual -Computing-Lab/openpose
Onttps://github.com/open-mmlab/mmpose

*Mttps://github.com/facebookresearch/sapiens
31
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Step 3: Feature Encoding?>?

Goal: Convert hand pose data into
useful input features for ML models.  Feature Types:

e Raw 2D/3D keypoints e Frame-based (pose snapshot)

e Distances between joints e Sequence-based (temporal movement)

e Angles between fingers e Hand-crafted vs. deep-learned embeddings
e Motion vectors (velocity, e Normalize for translation, scale, rotation

acceleration)

32 P Molchanov et al. (2016). “Online Detection and Classification of Dynamic Hand Gestures with
Recurrent 3D Convolutional Neural Networks”. In: 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 4207-4215
32



Step 4: ML Model Training>3

Input: Encoded features or pose

sequences
Common Models: Training Considerations:
e Classical ML: SVM, k-NN, e Supervised learning with gesture labels.
Random Forest e Augment data for generalization.
e Deep Learning: MLP, CNN, e Cross-subject and cross-session robustness.

LSTM, Transformers

e Spatio-temporal models for
gesture dynamics

SSRN R Ojeda-Castelo, M. d. L. M. Capobianco-Uriarte, J. A. Piedra-Fernandez, and R. Ayala (2022).

“A survey on intelligent gesture recognition techniques”. In: [EEE Access 10, 87135-87156
33



Step 5: Gesture Prediction®

Goal: Classify or detect user gestures
in real-time.

Deployment:
Output Types: e Smooth output with tracking or temporal
e Static: e.g., "Thumbs up”, "Open smoothing.
hand” e Handle uncertain input with confidence
thresholds.

e Dynamic: e.g., "Swipe left"”,
"Draw circle”

% P. Molchanov et al. (2016). “Online Detection and Classification of Dynamic Hand Gestures with
Recurrent 3D Convolutional Neural Networks”. In: 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 4207-4215
34



Hands On Example




EnvisionBOX (https://github.com/aluecking/ESSLLI2025 )

49 ESSLLI2025  rubic @ Watch
P oman - ¥ 18anch © 0Tags Q Gotofie + Addfie -
4 aluecking link to lect 3 slides v 7075654 14 howrs ago D) 11 Commits

) assets template for website 7 months ago
I images update lectures and literature: Tast week
I slides lecture 3 18 hours ago
[ LICENSE Initial commit 7 months ago
[ LICENSEtxt template for website 7 months ago
[ READMEtxt template for website 7 months ago
O indexhtm! ink tolect. 3 slides 14 hours ago
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EnvisionBOX (https://envisionbox.org/ )



https://envisionbox.org/

Future Directions




Where are the LLMs for Gesture Detection?3°

Data & Representation Model Capabilities

e Sparse paired data: very few e Spatial precision: overlay-based
corpora link gesture key-points + prompting (e.g. ViP-LLaVA) leaves 3-D
language; most instruction sets only joint reasoning unsolved.3®
contain captions. e Reasoning granularity: current

e Temporal mismatch: LLMs digest MLLMs excel at object semantics, but
static images; gestures are >30 FPS struggle with fine motor actions (pinch,
sequences = token explosion. swipe).

e Modality gap: 2-D RGB misses e Safety/bias: ambiguous gestures vary
depth, skeleton cues essential for culturally; no robust alignment or

- i policy-tuning yet.
% M. Cai et al. (2024). “Making Large Multimodal Models Understand Arbitrary Visual Prompts”. In:
IEEE Conference on Computer Vision and Pattern Recognition
% D. Feng et al. (2025). “PoselLaVA: Pose Centric Multimodal LLM for Fine-Grained 3D Pose
Manipulation”. In: Proceedings of the AAAI Conference on Artificial Intelligence 39, 2951-2959;
D. Zhang, T. Hussain, W. An, and H. Shouno (2025). LLaVA-Pose: Enhancing Human Pose and

Action Understanding via Keypoint-Integrated Instruction Tuning. arXiv: 2506.21317 [cs.CV] .


https://arxiv.org/abs/2506.21317

PoseLLaVA3%’
e Model changes: adds a pose encoder
plus a cross-attention into LLaVA for
global & local pose-image.

e Created datasets: adds PosePart (135
K single-body-part triplets) and
combines Human3.6M (300 K),
PoseScript (100 K) and PoseFix (135
K).

e Finetuning task: three-stage pipeline:
pose-image contrastive pre-align, LLM
pre-train on pose generation, unified
instruction-tuning over estimation /

Where are the LLMs for Gesture Detection?

LLaVA-Pose38

Model changes: no architectural edits
- retains LLaVA-1.5 and simply
augments prompts with 2-D keypoints.

Created datasets: auto-generates
200328 COCO-based keypoint-aware
instructions (conversation /
description / reasoning); also
publishes the E-HPAUB benchmark

for evaluation.

Finetuning task: full-model fine-tune
for one epoch; objective is richer chat,
description & reasoning about human
pose/action scenes.

3" D. Feng et al. (2025). “PoseLLaVA: Pose Centric Multimodal LLM for Fine-Grained 3D Pose
Manipulation™. In: Proceedings of the AAAI Conference on Artificial Intelligence 39, 2951-2959
33 N Zhano T Hirccain W An and H Shonne (2005)

11 Aa\VA_Poce: Fnhancine Hiiman Poce and 38
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Concept: Meta-Transformer®
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%9 Y. Zhang et al. (2023). “Meta-transformer: A unified framework for multimodal learning”. In:

arXiv preprint arXiv:2307.10802
39



Why most LLMs stay text & image*°

Compute / memory - universal tokens make long sequences; self-attention costly.
Limited generative - good at unimodal perception, unclear for cross-modal generation.
Dataset gaps - few richly multimodal pairs to unlock full promise.

Data scale - trillions of web tokens, billions of captions; far fewer paired corpora.
Token explosion - 10s of 30FPS video =~ 900 frames = hundreds of tokens.

ROI focus - chat, code, doc QA, image help already monetize; niche sensors give
uncertain payoff.

Tooling maturity - CLIP/LLaVA pipelines are production-ready; multimodal 3-D/audio
stacks still research-grade.

0" A. Henlein et al. (2024). “An Outlook for Al Innovation in Multimodal Communication Research”.
In: Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk

Management, 182-234; J. Jiang et al. (2025). Token-Efficient Long Video Understanding for
Multimodal LLMs. arXiv: 2503.04130 [cs.CV]; A. Kumar, M. M. Salim, D. Camacho, and

J. H.

Park (2025). “A comprehensive survey on large language models for multimedia data security:

challenges and solutions”. In: Computer Networks 267, 111379; Y. Zhang et al. (2023).
“Meta-transformer: A unified framework for multimodal learning”. In: arXiv preprint arXiv:2307.10802

40
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Va.Si.Li-Lab*

i ®

(4
e A VR-based simulation system. R <movemer,
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“LA. Mehler et al. (2023). “A Multimodal Data Model for Simulation-Based Learning with
Va.Si.Li-Lab". In: Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk

Management, 539-565
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SaGA 2.0: FraGA*
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2 A. Liicking et al. (2010). “The Bielefeld Speech and Gesture Alignment Corpus (SaGA)”. In:
Multimodal Corpora: Advances in Capturing, Coding and Analyzing Multimodality. 7th International
Conference for Language Resources and Evaluation, 92-98




SaGA 2.0: FraGA*

73 dialogues involving 146 speakers.

Speaking time # Tokens

total: 12:44:37 92,923

Router: 8:17:19 70,517

Follower: 4:27:18 22,406

Avg. Router: 0:06:49 1,273
Avg. Follower: 0:03:40 966
Avg. Dialogue: 0:10:28 307

3 Liicking, Voll, Rott, Henlein, Mehler (2025). “Head and hand movements during turn transitions:
data-based multimodal analysis using the Frankfurt VR Gesture-Speech Alignment Corpus (FraGA)".

In: accepted. 29th edition of the SemDial workshop series
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