MULTIMODAL INTERACTION IN DIALOGUE AND ITS MEANING ESSLLI 2022 | LECTURE 2

Jonathan Ginzburg Andy Lücking

LABORATOIRE DE LINGUISTIQUE FORMELLE Université Paris Cité

16TH AUGUST 2022

- Notions of multimodality (and -codality, -mediality)
- Synthesis of antecedents (speech act theory, language games, formal semantics, conversational analysis, ...)
- Formal framework: TTR and KoS

 Some desiderata for a theory of QNPs: predication, anaphoric potential, clarification request answering potential

➔ witness-based quantification resting on set-triples

Also needed for referential, demonstrative QNP uses: Look []! Every player is wearing rainbow colors. (Lect. 3)

- In all languages (generalization from English, German, Hebrew; see WALS for further support) verbs and adjectives and other predicates combine freely with all types of NPs:
 - (1) a. Jill **saw** Bo/every student/most students
 - b. Bo/every student/most students is/are pleasant
 - c. A grain of sand/that grain of sand will be **trapped** in my shoe
- So we should expect there to be a uniform way of predication, applicable to all NPs.

- All types of NPs give rise to pronominal anaphora:
 - (2) a. Jill saw Bo/every student/most students. **He/they** was/were happy.
 - b. Bo/every student/most students is/are pleasant. As long as **s/he** / **they** have eaten a nice breakfast.
 - c. A grain of sand/that grain of sand will be trapped in my shoe. It will be difficult to find there.

- All NPs can give rise to clarification interaction:
 - (3) A: Did Bo leave? B: BO? Who is Bo?
 → Is it BO_i that you are asking whether i left?
 → Who do you mean by 'Bo'?
 - (4) a. A: Most students support the proposal? B: What do you mean 'most students'?
 - b. A: Everyone was there. B: Everyone?

- Natural language meanings need to satisfy a constraint that is much more concrete than compositionality, namely incrementality: natural language input is processed word by word (and indeed at a higher, sub-lexical latency).
 - (5) A: Move the train ...
 B: Aha
 A: ...from Avon ...
 B: Right
 A: ...to Danville. (Trains corpus)

(6a, b, c) exemplify a contrast between three reactions to an 'abandoned' utterance: in (6a) B asks A to elaborate, whereas in (6b) she asks him to complete her unfinished utterance; in (6c) B indicates that A's content is evident and he need not spell it out. (6a, b, c) requires us to associate a content with A's incomplete utterance which can either trigger an elaboration query (6a), a query about utterance completion (6b), or an acknowledgement of understanding (6c).

- (6) a. A(i): John ... Oh never mind. B(ii): What about John/What happened to John? A: He's a lovely chap but a bit disconnected.
 - b. A(i): John ... Oh never mind. B(ii): John what? A: burnt himself while cooking last night.
 - c. A: Bill is ... B: Yeah don't say it, we know.

BASIC DESIDERATA

We need a theory of QNP meaning that can:

- 1. Provide a uniform account of predication
- 2. Deal with intra-/inter-sentential anaphora
- 3. Explain clarificational potential
- 4. Be (potentially) incremental

BASIC DESIDERATA

We need a theory of QNP meaning that can:

- 1. Provide a uniform account of predication
- 2. Deal with intra-/inter-sentential anaphora
- 3. Explain clarificational potential
- 4. Be (potentially) incremental
- Our theory of QNP meaning should also:
 - 5. Explicate scope ambiguity
 - 6. Explicate intensional readings of indefinites
 - 7. Cover negation of NPs

... but this is beyond the scope of this lecture (see Lücking and Ginzburg, 2022 for more on this)

COMPOSITIONALITY AND PL1 I

- Fido barks is translated into the simple predication bark'(f), and Every dog barks is represented by $\forall x[dog'(x) \rightarrow bark'(x)]$.
- A problem with the latter formula is that there is no direct counterpart for the NP *every dog* within the logical form.
- We want two have two building blocks: every'(dog'(x)) and bark'(x)
- And if we have, what is their predicational relation?
- Two options:
 - 1. NP as argument of VP, as usual (which then must be modified to take some higher-order argument, not just individuals).
 - 2. Or: VP as argument of NP.
- Montague's (Montague, 1974) move: package the quantificational meaning into the QNP (captures the wanted 'building block') and let it select for predicational arguments.

- The logical form of *Every dog barks* still is $\forall x[dog'(x) \rightarrow bark'(x)].$
- But the meaning of the subject NP every dog can be extracted as $\lambda P \forall x [dog'(x) \rightarrow P(x)]$, that is, the set of properties P which every dog has.
- Likewise for other QNPs, so a general compositional treatment is achieved, e.g. $a \ dog \mapsto \lambda P \exists x [dog'(x) \land P(x)]$, the set of properties at least some dog has.

VPs as arguments of subject QNPs

But what about proper names? Different predicational direction for referential and quantificational subjects:

- Technically there is a simple solution: Just package the referential NPs like the QNPs: Fido $\mapsto \lambda P.P(f)$
- \blacksquare If we do this, all's good derivationwise: Fido barks ightarrow

S, t
NP,
$$\langle \langle e, t \rangle, t \rangle$$
 V, $\langle e, t \rangle$
| '--'' |
Fido barks

GENERALIZED QUANTIFIERS

- Relational view following 'Montague's move(s)': every(dog)(barks), where the quantifier word expresses a relation between the restrictor set (N) and the scope set (V).
- Uniform meaning of QNPs: sets of subsets of the domain of discourse U such that:
- (1) a. $\llbracket every NP \rrbracket = \{\llbracket X \rrbracket \subseteq U : \llbracket NP \rrbracket \subseteq \llbracket X \rrbracket\}$
 - **b.** $\llbracket \text{most NP} \rrbracket = \{\llbracket X \rrbracket \subseteq U : |\llbracket X \rrbracket \cap \llbracket NP \rrbracket| > |\llbracket X \rrbracket^- \cap \llbracket NP \rrbracket|\}$
 - $\textbf{c.} \quad \llbracket \textbf{no} \ \textbf{NP} \rrbracket = \{\llbracket \textbf{X} \rrbracket \subseteq \textbf{\textit{U}} : \llbracket \textbf{NP} \rrbracket \cap \llbracket \textbf{X} \rrbracket = \emptyset\}$
 - d. $\llbracket \text{two NP} \rrbracket = \{ X \subseteq U : \llbracket \text{NP} \rrbracket \cap X \text{ contains two members} \}$
 - e. ... and so on

The standard analysis in formal semantics following Barwise and Cooper (1981)

- On this view, an individual is represented in terms of its properties.
- Good: a representation like *\lambda P.P(f)* is consonant with the view that we represent people in terms of a bunch of properties they have.
- Baddish: What about the 'thinginess' of proper name bearers? Does the complex property predication correspond to the way we think / is cognitively plausible?

- How to evaluate a sentence of the form Q(N)(VP)?
- Sieving: Q separates VP denotations into those that do and those that do not combine with the QNP to produce a true sentence.
- Do we have to check all VP denotations there are? No! We can restrict ourselves to those VP elements that are also elements of the NP (conservativity). [Memo: To verify whether all dogs bark we don't need to care about cats.]
- But checking whether *Fido barks* involves constructing all sets *λP.P(f)* to which *f* belongs and then seeing whether the set of barkers is one of these sets.
- This clearly does not correspond to the reasoning process actually used by a native speaker of English to verify such an utterance.

SIEVES AND WITNESSES II

- Witness-based reasoning (Barwise and Cooper, 1981): Consider a set w, an arbitrarily chosen representative of the NP denotation: if w is also part of the VP denotation (eventually obeying restrictions imposed by the quantifier relation), then the sentence is true.
- w is known as witness set.
- Witness sets have been introduced as an auxiliary notion for cognitive reasons, they are not part of the official semantic theory.
- Dialogue, however, provides crucial evidence that witnesses are the kind of contents people assign to QNPs (see also Cooper, 2022).

TALKING ABOUT QNPs I

- Ginzburg and Cooper (2004) and Purver and Ginzburg (2004) argue in detail that the clarificational potential of an utterance u includes the question in (7), this can become the (maximal) question under discussion, and serve to resolve non-sentential clarification questions.
 - (7) What did you mean as the content of *u*?
- Hence, answers to such questions provide indications as to intended content.
- For clarification questions triggered by proper names as in (8) a resolving answer communicates an individual, in (8b) identified via its location:

TALKING ABOUT QNPs II

- (8) a. Christopher: Could Simon come round tomorrow? Phillip: Simon? Jane: Mm mm. Simon Smith.
 (BNC, KCH, 48–51, slightly modified) Phillip: Oh! Simon. (pause dur=6) I don't know if we're gonna go out.
 - b. Dave: O'Connors again.
 Keith: O'Connors?
 Dave: Yeah
 Keith: Where's that?
 Dave: [provides address]
 Keith: [repeats address]
 (BNC, KCY, 1183–86)
- What, then, for the clarificational potential of QNPs?

- Purver and Ginzburg (2004) show that answers to clarification questions (CQs) about QNPs communicate individuals and sets of individuals (as in (9a,b)), and even function denoting NPs.
- However, there is no evidence of *talk* about GQs (the contents associated with QNPs according to GQT).
 - (9) a. Terry: Richard hit the ball on the car. Nick: What ball? [~ What ball do you mean by 'the ball'?] Terry: James [last name]'s football. [→ individual] (BNC KR2, 862–866)

TALKING ABOUT QNPs IV

b. Richard: No I'll commute every day ANON 6: Every day? [\rightarrow Is it every day you'll commute?1 $[\rightarrow$ Is it every **day** you'll commute?1 $[\rightarrow Which days do you mean by$ "every day"?] Richard: as if, er Saturday and Sunday Anon 6: And all holidays? $[\rightarrow$ set of days] Richard: Yeah [pause] (BNC KSV, 257-261)

Note: Accepted answers in terms of individuals and sets, not sets of sets.

- As is widely accepted, the antecedent contents allow for two kinds of witnesses, a so-called maximal set and a reference set.
- Both are exemplified in (10), where the plural pronoun in (10 a) refers back to environmentalists that actually took part in the rally (the *reference set*, or *refset*), and the plural pronoun in (10 b) picks up an antecedent which denotes the totality of environmentalists that could have come (the *maximal set*, or *maxset*).
 - (10) a. Only seventy environmentalists came to the rally ...
 - b. ... but they raised their placards defiantly.
 - c. ... although they had all received an invitation.
- When the antecedent NP involves a downward monotone quantifier even a further witness can be picked out (Nouwen, 2003):

- (11) Few environmentalists came to the rally. They went to a football game instead.
- The plural pronoun from the second sentence in (11) refers back to those environmentalists that stayed away from the rally.
- Accordingly, (11) is an instance of complement set anaphora, or compset anaphora.
- Just as denotations can be used to delimit the clarification potential of QNPs, maxset, refset and compset stake out their anaphoric potential.
- > In sum: evidence for witness-based quantification

TWO TOWERS EXAMPLE FROM SAGA CORPUS; LÜCKING ET AL. 2010

'die rechte Kirche die hat zwei spitze Türme'

the church to the right it has to pointed towers

LF of two pointed towers contributes group variable X and member variable y:

 $\exists X \; [\forall y \; [y \in X \; \rightarrow \; tower'(y) \; \land \; pointed'(y)] \; \land \; |X| = 2]$

- Gesture interpretation:
 - Each hand/finger represents one of the towers.
 - Neither attaching the gesture to X nor to y captures the desired interpretation.

More systematically: How to detect denotations?

Referential Transparency (RT) (Lücking and Ginzburg, 2022)

The semantic representation of an NP is referentially transparent if

- a. it provides antecedents for pronominal anaphora
- b. it provides the semantic type asked for by a clarification request
- c. it provides an attachment site for **co-verbal gestures** [multimodal extension of anaphora]
- d. its content parts can be identified and addressed.

Generalized Quantifier

Referential Transparency Theory (RTT) $\{\langle \{\cdot\}, \emptyset \rangle, \langle \{\cdot\}, \{\cdot\} \rangle, \ldots \} \ dogs$ every (via descriptive quantifier condition) $\{\langle \{\cdot\}, \emptyset \rangle\} \ every dog$ witnessing

s set of dogs barking

predication

true iff the set of dogs is contained in the set of barking things. (Note: set of sets model is difficult to reconcile with clarifications) true iff (i) there is a situation or event s which involves witnesses of the extension of the plural type dogs, (ii) the witnesses comply to the descriptive condition of every, and (iii) the situation can be classified as a barking one.

'ANATOMY' OF QNPS

 Our proposal: set/ind-based model of quantified noun phrases (QNPs).

NP_{sem}			
q-params :	maxset : Set(Ind) c1 : Ppty(maxset) [plural property] refset : Set(Ind) compset : Set(Ind) c2 : union(maxset, refset, compset)		
q-cond :	q-cond : <i>Rel</i> (q-params.refset , q-params.compset)		
[q-persp :	retset=∅ ∨ retset≠ ∅ ∨ none		

Every component is referentially transparent, that is, directly relates to clarification requests or pronominal anaphora and is addressable via its label.

Sets p of ordered set bipartition

An ordered set bipartition b of a set s is a pair of disjoint subsets of s including the empty set such that the union of these subsets is s. Form: $\langle refset, compset \rangle$

 $[\downarrow \operatorname{Bicycle}] = \{ \mathfrak{F}_{0}, \mathfrak{F}_{0}, \mathfrak{F}_{0} \}, p([\downarrow \operatorname{Bicycle}]) = \{ \langle \{ \mathfrak{F}_{0}, \mathfrak{F}_{0}, \mathfrak{F}_{0} \}, \langle \{ \mathfrak{F}_{0}, \mathfrak{F}_{0} \}, \langle \mathfrak{F}_{0}, \mathfrak{F}_{0} \}, \rangle$

 $\{\langle \{ \mathfrak{P}, \mathfrak{P}, \mathfrak{P}, \mathfrak{P} \rangle, \emptyset \rangle,$ $\langle \{ \mathfrak{F}, \mathfrak{F} \rangle, \mathfrak{F} \rangle, \{ \mathfrak{F} \rangle \rangle, \langle \mathfrak{F} \rangle \rangle$ $\langle \{ \mathfrak{F}, \mathfrak{F} \rangle, \mathfrak{F} \rangle, \langle \mathfrak{F} \rangle \rangle, \langle \mathfrak{F} \rangle \rangle$ $\langle \{ \mathfrak{F}, \mathfrak{F} \rangle, \{ \mathfrak{F} \rangle \rangle, \}$ $\langle \{ \mathfrak{F} \rangle, \{ \mathfrak{F} \rangle, \mathfrak{F} \rangle \rangle,$ $\langle \{ \mathfrak{F} \rangle, \{ \mathfrak{F} \rangle, \mathfrak{F} \rangle \rangle, \langle \mathfrak{F} \rangle, \mathfrak{F} \rangle \rangle$ $\langle \{ \mathfrak{F} \rangle, \{ \mathfrak{F} \rangle, \mathfrak{F} \rangle, \langle \mathfrak{F} \rangle, \mathfrak{F} \rangle, \langle \mathfrak{F}$ $\langle \emptyset, \{ \mathfrak{F}, \mathfrak{F}, \mathfrak{F}, \mathfrak{F} \} \rangle$

most: |refset| >> |compset| most(bicycles)

 $\{\langle \{ \mathcal{O}, \mathcal{O}, \mathcal{O}, \mathcal{O} \rangle, \emptyset \rangle,$ $\langle \{ \overrightarrow{oo}, \overrightarrow{oo} \}, \{ \overrightarrow{oo} \} \rangle,$ $\langle \{ \mathfrak{F}, \mathfrak{F} \rangle, \{ \mathfrak{F} \rangle \rangle,$ $\langle \{ \mathfrak{O}, \mathfrak{O} \}, \{ \mathfrak{O} \} \rangle,$ $\langle \{ \mathfrak{P} \rangle, \{ \mathfrak{P} \rangle, \mathfrak{P} \rangle, \langle \mathfrak{P} \rangle, \mathfrak{P} \rangle, \langle \mathfrak{P}$ $\langle \{ \mathfrak{P} \rangle, \{ \mathfrak{P} \rangle, \mathfrak{P} \rangle, \langle \mathfrak{P} \rangle, \mathfrak{P} \rangle, \langle \mathfrak{P} \rangle, \mathfrak{P} \rangle, \langle \mathfrak{P} \rangle$ $\langle \{ \mathfrak{O} \}, \{ \mathfrak{O}, \mathfrak{O} \} \rangle,$ $\langle \emptyset, \{ \mathfrak{O}, \mathfrak{O}, \mathfrak{O}, \mathfrak{O} \} \rangle \}$

- most: |refset| >> |compset| most(bicycles)
- every: |refset| = |maxset|
 every(bicycle)

 $\{\langle \{ \mathfrak{O}, \mathfrak{O}, \mathfrak{O}, \mathfrak{O} \rangle, \emptyset \rangle,$ $\langle \{ \mathfrak{P}, \mathfrak{P} \rangle, \{ \mathfrak{P} \rangle \rangle, \}$ $\langle \{ \mathfrak{O}, \mathfrak{O} \}, \{ \mathfrak{O} \} \rangle,$ $\langle \{ \overrightarrow{o}, \overrightarrow{o} \}, \{ \overrightarrow{o} \} \rangle,$ $\langle \{ \mathfrak{P} \rangle, \{ \mathfrak{P} \rangle, \mathfrak{P} \rangle, \langle \mathfrak{P} \rangle, \mathfrak{P} \rangle, \langle \mathfrak{P}$ $\langle \{ \mathfrak{P} \rangle, \{ \mathfrak{P} \rangle, \mathfrak{P} \rangle, \langle \mathfrak{P} \rangle, \mathfrak{P} \rangle, \langle \mathfrak{P} \rangle, \mathfrak{P} \rangle, \langle \mathfrak{P} \rangle$ $\langle \{ \mathfrak{O} \}, \{ \mathfrak{O}, \mathfrak{O} \} \rangle,$ $\langle \emptyset, \{ \mathfrak{F}, \mathfrak{F}, \mathfrak{F}, \mathfrak{F} \} \rangle \}$

- most: |refset| >> |compset| most(bicycles)
- every: |refset| = |maxset|
 every(bicycle)
- **no**: |refset| = Ø no(bicycle)

 $\{\langle \{ \mathfrak{P}, \mathfrak{P}, \mathfrak{P}, \mathfrak{P} \rangle, \emptyset \rangle,$ $\langle \{ \mathfrak{P}, \mathfrak{P} \rangle, \{ \mathfrak{P} \rangle \rangle, \langle \mathfrak{P} \rangle \rangle$ $\langle \{ \overline{\mathcal{O}}, \overline{\mathcal{O}} \}, \{ \overline{\mathcal{O}} \} \rangle,$ $\langle \{ \overrightarrow{o}, \overrightarrow{o} \}, \{ \overrightarrow{o} \} \rangle,$ $\langle \{ \mathfrak{P} \rangle, \{ \mathfrak{P} \rangle, \mathfrak{P} \rangle, \langle \mathfrak{P} \rangle, \mathfrak{P} \rangle, \langle \mathfrak{P}$ $\langle \{ \mathfrak{P} \rangle, \{ \mathfrak{P} \rangle, \mathfrak{P} \rangle, \langle \mathfrak{P} \rangle, \mathfrak{P} \rangle, \langle \mathfrak{P} \rangle, \mathfrak{P} \rangle, \langle \mathfrak{P} \rangle$ $\langle \{ \mathfrak{O} \}, \{ \mathfrak{O}, \mathfrak{O} \} \rangle,$ $\langle \emptyset, \{ \mathfrak{F}, \mathfrak{F}, \mathfrak{F}, \mathfrak{F}, \mathfrak{F} \} \rangle$

■ For 2 elements in *U* there are 4 ordered set bipartitions:

$$\begin{split} & \{ \langle \emptyset, \{ \mathfrak{F} \mathfrak{O}, \mathfrak{F} \mathfrak{O} \} \rangle, \\ & \langle \{ \mathfrak{F} \mathfrak{O} \}, \{ \mathfrak{F} \mathfrak{O} \} \rangle, \\ & \langle \{ \mathfrak{F} \mathfrak{O} \}, \{ \mathfrak{F} \mathfrak{O} \} \rangle, \\ & \langle \{ \mathfrak{F} \mathfrak{O}, \mathfrak{F} \mathfrak{O} \}, \emptyset \} \rangle \} \end{split}$$

For 2 elements in *U* there are 4 ordered set bipartitions:

 $\{ \langle \emptyset, \{ \mathfrak{G} \mathfrak{d}, \mathfrak{G} \mathfrak{d} \} \rangle,$ $\langle \{ \mathfrak{G} \mathfrak{d} \}, \{ \mathfrak{G} \mathfrak{d} \} \rangle,$ $\langle \{ \mathfrak{G} \mathfrak{d} \}, \{ \mathfrak{G} \mathfrak{d} \} \rangle,$ $\langle \{ \mathfrak{G} \mathfrak{d}, \mathfrak{G} \mathfrak{d} \}, \{ \mathfrak{d} \} \rangle \}$

not distinguishable for a quantifier, since no q-cond can tell them apart (**quantitativity**)

For 2 elements in *U* there are 4 ordered set bipartitions:

$\{\langle \emptyset, \{ $? , ? , ? ,	not distinguish-
<{ (((((((((((((((((((able for a quanti-
<pre>(()), ()), ()), ()), ()), ()), ()), ())</pre>	fier, since no q-cond
⟨{ @% },{ @% }⟩, ◄	can tell them apart
$\langle \{ { { { { { } { { } { { } { { } { } { } $	(quantitativity)

 3 cardinally different bipartitions, which give rise to 7 possible QNP denotations, namely:

30

 $\langle \{\emptyset, \{\partial, \partial, \partial, \partial\} \rangle, \\ \langle \{\partial, \{\partial, \partial, \partial, \partial, \partial\} \rangle, \\ \langle \{\partial, \{\partial, \partial, \partial, \partial\} \rangle, \\ \langle \{\partial, \partial, \partial, \partial\}, 0 \rangle \rangle \rangle$

7

- $\begin{array}{c}
 \{\{\emptyset,\{\emptyset,\{\emptyset\},\{\emptyset\}\}\},\\ \{\{\emptyset\},\{\emptyset\}\}\},\\ \{\{\emptyset\},\{\emptyset\}\}\}\\ \{\{\emptyset\},\{\emptyset\}\}\\ \{\{\emptyset\},\{\emptyset\}\}\}\\ \{\{\{\emptyset\},\{\emptyset\}\}\}\\ \{\{\emptyset\},\{\emptyset\}\}\}\\ \{\{\{\emptyset\},\{\emptyset\}\}\}\\ \{\{\emptyset\},\{\emptyset\}\}\}\\ \{\{\{\emptyset\},\{\emptyset\}\}\}\}\\ \{\{\{\emptyset\},\{\emptyset\}\}\}\}\\ \{\{\{\emptyset\},\{\emptyset\}\}\}\}\\ \{\{\{0\},\{0\}\}\}\}\\ \{\{\{0\},\{0\}\}\}\}\\ \{\{\{0\},\{0\}\}\}\}$
- $\{\langle \emptyset, \{$ **3**(**3**(**3**(**3**)),
- 1 $\{\langle \emptyset, \{ \mathfrak{F}, \mathfrak{F}, \mathfrak{F} \rangle\}$
- $\{\langle \{\mathfrak{O}\}, \{\mathfrak{O}\} \rangle, \\ \mathsf{S} \quad \langle \{\mathfrak{O}\}, \{\mathfrak{O}\} \rangle, \\ \langle \{\mathfrak{O}, \mathfrak{O}\}, \emptyset \rangle \}$
- $\{\langle \{ \mathfrak{F} \}, \{ \mathfrak{F} \} \rangle, \\ \langle \{ \mathfrak{F} \}, \{ \mathfrak{F} \} \rangle \}$
- $\begin{array}{c}
 \left\{\langle \emptyset, \{\mathfrak{F}, \mathfrak{F}, \mathfrak{F}\}\rangle, \\
 \langle \{\mathfrak{F}, \mathfrak{F}\}, \emptyset\}\rangle \right\}
 \end{array}$
- $(\langle \{ \mathfrak{N}, \mathfrak{N} \rangle, \emptyset \} \rangle$

2

43

 $\{\langle \emptyset, \{ \mathfrak{GO}, \mathfrak{GO} \} \rangle, \\ \langle \{ \mathfrak{GO} \}, \{ \mathfrak{GO} \} \rangle, \\ \langle \{ \mathfrak{GO} \}, \{ \mathfrak{GO} \} \rangle, \\ \langle \{ \mathfrak{GO} \}, \mathfrak{GO} \}, \rangle \} \rangle \}$

7

- $\begin{array}{c}
 \{(3), \{(2), (3)\}, \\
 \{(3), \{(3)\}, \{(3)\}, \\
 (\{(3), \{(3)\}, \{(3)\}, \{(3)\}, \{(3)\}, \\
 ((3), \{(3)\}, \{(3)\}, \{(3)\}, \{(3)\}, \\
 ((3), (3)\}, \{(3)\}, \{(3)\}, \\
 ((3), (3)\}, \\
 ((3), (3)\}, \\
 ((3), (3)\}, \\
 ((3), (3)\}, \\
 ((3), (3)\}, \\
 ((3), (3)\}, \\
 ((3), (3)\}, \\
 ((3), (3)\}, \\
 ((3), (3)\}, \\
 ((3), (3)\}, \\
 ((3), (3)\}, \\
 ((3), (3)\}, \\
 ((3), (3)\}, \\
 ((3), (3)\}, \\
 ((3), (3)\}, \\
 ((3), (3)\}, \\
 ((3), (3)), \\
 ((3), (3)\}, \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3), (3)), \\
 ((3),$
- $\{\langle \emptyset, \{$ **intox**, **intox** $\} \rangle,$
- 1 $\{\langle \emptyset, \{ \mathfrak{N}, \mathfrak{N} \} \}$

2 {⟨{ॐ}}, {ॐ}⟩, ⟨{ŵ}}, {{*}}⟩

 $\{\langle \{ \eth \}, \{ \eth \} \rangle, \}$

 $\langle \{ \mathfrak{O}, \mathfrak{O} \}, \emptyset \rangle \}$

5 $\langle \{ \mathfrak{P} \rangle \}, \{ \mathfrak{P} \rangle \rangle,$

 $(\langle \{ \mathfrak{N}, \mathfrak{N} \rangle, \emptyset \} \rangle$

 $\begin{array}{l}
6 \quad \left\{ \langle \emptyset, \{ \mathfrak{F}, \mathfrak{F}, \mathfrak{F} \rangle \right\} \\
\langle \{ \mathfrak{F}, \mathfrak{F}, \mathfrak{F} \rangle \} \rangle \end{array}$

for n = 2: 7 possible QNP denotations. Significantly reduced logical space: for a universe of 2 elements there are 63 possible quantifiers (7 QNPs), not 65,536 as in GQT (Lücking and Ginzburg, 2022)

- No quantifier raising needed
 incremental processing
- When sentences that contain quantificational arguments are presented as spoken input, QNPs are interpreted in a fully incremental manner: ERP findings (Urbach, DeLong and Kutas, 2015; Freunberger and Nieuwland, 2016)
 - (12) a. A: Everyone ... B: Who?
 - b. A: [enters class] No students ... Oh, they're hiding.

EXAMPLE I

Few students left.

[sit = s1 : Rec				
		q-params :	maxset : Set(Ind) co : student(maxset) refset : Set(Ind)		
	sit-type =		compset : Set(Ind) c1 : union(refset,compset,maxset)	: RecType	
$ q$ -cond : $ q$ -params.refset $ \ll q$ -params.compset nucl : $\overrightarrow{left}(q$ -params.refset)			$ q$ -params.refset $ \ll q$ -params.compset		
			left(q-params.refset)		
		anti-nucl : ¬left(q-params.compset)			
		q-persp :	$refset = \emptyset [empty set is part of refset bipartition(s)]$		

The record type in (12 b) is referentially transparent since it provides discourse referents for refset and maxset anaphora.

- Since it also hosts a compset, it can act for compset anaphora — licensed by q-persp's feature value 'refset= Ø'.
- By means of negative predication on the compset (label 'anti-nucl'), ((12)) expresses that the students from the complement set did not leave.
- But what is q-params?

REFERENTIAL MANAGEMENT I

- Isn't quantification about describing, not referring?
- Recall DGB as cognitive state classification.
- We distinguish two sets of entities, following certain HPSG-originating approaches (Ginzburg and Purver, 2012)
 - dgb-params: need to be instantiated by witnesses
 - q-params: existentially quantified 'away'
- A thief [whoever s/he was] stole my iPad. → Discourse referent of thief is part of q-params, that of my iPad is part of dgb-params and is **witnessed** (since I know my iPad although it is unfortunately gone right now)
- Crucial role in clarification interaction:

 [earlier example repeated] Christopher: Could Simon come round tomorrow?
 Phillip: Simon?
 Jane: Mm mm. Simon Smith.

(BNC, KCH, 48–51, slightly modified)

 Phillip cannot witness 'Simon' (q-params) unless reference is clarified by Jane (moved to dgb-params) quantificational: refset is part of q-params.
 Example: The thieves (whoever they are) escaped with the loot.

 $a: \begin{bmatrix} q-params : \begin{bmatrix} maxset : Set(Ind) \\ c_1 : \overrightarrow{P}(maxset) \\ refset : Set(Ind) \\ compset : Set(Ind) \end{bmatrix} \\ q-cond : Rel(|q-params.refset|, |q-params.compset|) \end{bmatrix}$ iff $a \in p([\downarrow P]) \land Rel(|a.first|, |a.second|) = 1$ plural reference: refset is part of dgb-params.
 Example: Look! Many men wearing big boots are stealing our lemons.

a: $\begin{bmatrix} maxset : Set(Ind) \\ c_1 : \overrightarrow{P}(maxset) \\ refset : Set(Ind) \\ compset : Set(Ind) \\ q-cond : Rel(|dgb-params.refset|, |dgb-params.compset|) \end{bmatrix}$ iff $a = \iota x[x \in p([\downarrow P]) \land Rel(|x.first|, |x.second|) = 1 \land x \in common-ground(spkr, addr)]$ indefinite: refind is part of q-params.
 Example: Can anybody find me somebody to love? (Queen)

	Ē	maxset	: Set(Ind)],
a:	q-params :	C1	$: \overrightarrow{P}$ (maxset)	
		refset	: Set(Ind)	
		compset : Set(Ind)		
		refind	: Ind	
		c2	: in(refind,refset)	

iff $a \in p([\downarrow P]) \land \exists x[x \in a.first] \land refind = x$

singular reference: refind is part of dgb-params.
 Example: The current world chess champion is Magnus Carlsen.

		[maxset	: Set(Ind)	,
a:	dgb-params :	C1	$: \overrightarrow{P}$ (maxset)	
		refset	: Set(Ind)	
		compset : Set(Ind)		
		refind	: Ind	
		C2	: in(refind,refset)	

iff $a \in p([\downarrow P]) \land \iota x[x \in a.first] \land refind = x \land x \in common-ground(spkr, addr)$

- Besides the 'classic' readings distinguished above, our referential/quantificational mechanism captures further, more finegrained, possibilities.
- For instance, detective Hercule Poirot (a figure of the crime stories of Agatha Christie) often finds himself in a situation where he knows the refset (i.e., the group of suspects, which is part of Poirot's dgb-params), but the actual culprit still has to be convicted, that is, the refind initially is part of q-params.
- The tension in such Whodunit crime novels consists in the detective transferring the refind from q-params to dgb-params.

43

41

KNOWLEDGE-BASED REFERENCE II

- In Spectre, James Bond soon learns that Franz Oberhauser is a member of a criminal organisation (the eponymic secret society Spectre), but is still unaware of who else belongs to it.
- In this case, the refset (i.e., Spectre members) is part of Bond's q-params, while refind Oberhauser is already grounded in dgb-params.
- One can also conceive of cases where the compset is part of dgb-params, while the refset is part of q-params.
- This configuration is exemplified by John F. Kennedy's question 'If not us, who?'.
- These examples illustrate the range of, and the need for, a cognitively oriented referentiality/non-referentiality mechanism grounded in memory (Ginzburg and Lücking, 2020).

'Look! [""] All the dogs are barking."

- According to RTT, the pointing gesture can point to a set of dogs, not to a property of set (of dogs).
- According to direct reference views (Kaplan, 1989) such a sentence is true if the entity provided by the pointing gesture is part of the denotation of barking things [NB: Kaplan does not deal with pluralities, but intuitively clear enough]
- But what does 'entity provided by the pointing gesture' mean? Let us ask experimental pragmatics studies > next lecture.

REFERENCES I

Barwise, Jon and Robin Cooper (1981). 'Generalized Quantifiers and Natural Language'. In: Linguistics and *Philosophy* 4.2, pp. 159–219. DOI: 10.1007/BF00350139. Cooper, Robin (2022). From perception to communication: An analysis of meaning and action using a theory of types with records (TTR). Oxford University Press. URL: https://github.com/robincooper/ttl. Freunberger, Dominik and Mante S. Nieuwland (2016). 'Incremental comprehension of spoken quantifier sentences: Evidence from brain potentials'. In: Brain Research 1646, pp. 475-481. DOI: 10.1016/j.brainres.2016.06.035. Ginzburg, Jonathan and Robin Cooper (2004). 'Clarification, Ellipsis, and the Nature of Contextual Updates'. In: Linguistics and Philosophy 27.3, pp. 297–366.

REFERENCES II

- Ginzburg, Jonathan and Andy Lücking (2020). 'On Laughter and Forgetting and Reconversing: A neurologically-inspired model of conversational context'. In: Proceedings of the 24th Workshop on the Semantics and Pragmatics of Dialogue. SemDial/WatchDial. Brandeis University, Waltham, New Jersey (Online). URL: http://semdial.org/anthology/Z20-Ginzburg_semdial_0008.pdf.
- Ginzburg, Jonathan and Matthew Purver (2012). 'Quantification, the Reprise Content Hypothesis, and Type Theory'. In: From Quantification to Conversation. Festschrift for Robin Cooper on the occasion of his 65th birthday. Ed. by Lars Borin and Staffan Larsson. London: College Publications.

REFERENCES III

- Kaplan, David (1989). 'Demonstratives: An Essay on the Semantics, Logic, Metaphysics, and Epistemology of Demonstratives and Other Indexicals'. In: *Themes from Kaplan*. Ed. by J. Almog et al. An earlier unpublished version exists as a UCLA Ms from ca. 1977. New York: Oxford University Press, pp. 481–614.
- Lücking, Andy and Jonathan Ginzburg (2022). 'Referential transparency as the proper treatment of quantification'. In: *Semantics and Pragmatics* 15, 4. DOI: 10.3765/sp.15.4.
- Montague, Richard (1974). 'The Proper Treatment of Quantification in Ordinary English'. In: *Formal Philosophy*. Ed. by Richmond Thomason. New Haven: Yale UP.
- Nouwen, Rick (2003). 'Complement Anaphora and Interpretation'. In: Journal of Semantics 20.1, pp. 73–113. DOI: 10.1093/jos/20.1.73.

- Purver, Matthew and Jonathan Ginzburg (2004). 'Clarifying Noun Phrase Semantics'. In: Journal of Semantics 21.3, pp. 283–339. DOI: 10.1093/jos/21.3.283.
- Urbach, Thomas P., Katherine A. DeLong and Marta Kutas (2015). 'Quantifiers are Incrementally Interpreted in Context, More than Less'. In: *Journal of Memory and Language* 83, pp. 79–96. DOI: 10.1016/j.jml.2015.03.010.